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In 1940-1941, Burchnall and Chaundy, using the inverse pairs of symbolic operators
introduced, systematically presented a number of expansion formulas for second-order
Appell and Humbert hypergeometric functions in series of simpler hypergeometric
functions. In 2006, Hasanov and Srivastava generalized Burchnall-Chaundy operators and
found expansions for a class of multiple hypergeometric functions, however, the application
of these operators is still limited to second-order hypergeometric functions. In this paper,
we obtain expansions for the Kampé de Fériet functions of arbitrary orders.
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1. Introduction

Hypergeometric functions naturally occur in a wide variety of problems in
applied mathematics, statistics, operations research, theoretical physics, and engineering
sciences. In scientific literature it is found a number of interesting applications of
hypergeometric functions in one and more variables in queuing theory and related
stochastic processes [1], in physical and quantum chemical problems [2]. Especially, many
problems in gas dynamics lead to solutions of degenerate second-order partial differential
equations which are then solvable in terms of multiple hypergeometric functions. Among
examples, we can cite the problem of adiabatic flat-parallel gas flow without whirlwind,
the flow problem of supersonic current from vessel with flat walls, and a number of other
problems connected with gas flow [3].

The great success of the theory of hypergeometric functions of a single variable has
stimulated the development of a corresponding theory in two or more variables. Appell
has defined, in 1880, four series, I} to F; which are all analogous to Gauss’ F'(a, b; ¢; 2).
Picard has pointed out that one of these series is intimately related to a function
studied by Pochhammer in 1870, and Picard and Goursat also constructed a theory of
Appell’s series which is analogous to Riemann’s theory of Gauss’ hypergeometric series.
P. Humbert has studied confluent hypergeometric series in two variables. An expansion
of the results of the French school together with references to the original literature are
to be found in the monograph by Appell and Kampé de Fériet [4], which is the standart
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work on the subject. This work also contains an extensive bibliography of all relevant
papers up to 1926.

A great merit in the further development of the theory of the hypergeometric series
in two variables belongs to Horn, who gave a general definition and order classification
of double hypergeometric series. He has investigated the convergence of hypergeometric
series of two variables and established the systems of partial differential equations which
they satisfy. Horn investigated in particular hypergeometric series of order two and found
that, apart from certain series which are either expressible in terms of one variable or
are products of two hypergeometric series, each in one variable, there are essentially 34
distinct convergent series of order two.

The idea of extending the number of parameters in the Gauss function seems to
have occurred for the first time, in the work of Clausen [5]. He introduced a series with
three numerator parameters and two denominator parameters. Over the next hundred
years the well-known set of special summation theorems associated with the names of
Saalschutz [6], Dixon [7] and Dougall [8] were developed. Modern notation ,F, of the
generalized hypergeometric functions was due to Barnes [9)].

Just as the Gaussian series F'(a,b;c;2) was generalized to ,F, by increasing the
numbers of the numerator and denominator parameters, the four Appell series were
unified and generalized by Kampé de Fériet [10] who defined a general hypergeometric
series in two variables (see, [4, p.150, eq.(29)]). Since then, a lot of work has been
devoted to the study of the Kampé de Fériet functions [11-20].

For a given multiple hypergeometric function, it is useful to fund an expansion
formulas which would express the multivariable hypergeometric function in terms of
products of several simpler hypergeometric functions involving fewer variables. Using
the symbolic method Burchnall and Chaundy [21; 22| obtained more than 15 pairs of
expansions for 11 double hypergeometric functions. The well-known Poole’s formula [23]
played an important role in the studies of Burchnall and Chaundy, but this one formula
was not enough for the expansion of all functions from the Horn’s list [24, pp.224—
227]. In a recent work [25], the authors managed to find expansions for some double
hypergeometric functions of order 2. There are decomposition formulas for the second
order hypergeometric functions when the dimension exceeds two [26-28].

At present expansion formulas have been established for some hypergeometric
functions of three or more variables. In 2006-2007 Hasanov and Srivastava [29; 30|
introduced multidimensional analogous of the Burchnall-Chaundy operators and found
expansion formulas for many triple hypergeometric functions, and they proved recurrent
formulas when the dimension of the second-order hypergeometric functions exceeds
three. However, due to the recurrence, additional difficulties may arise in the applications
of these expansion formulas. Recently expansion formulas free from recurrence for
multiple hypergeometric Lauricella functions are obtained and used to find explicit
solutions to boundary value problems for a multidimensional elliptic equation with
several singular coefficients [31; 32].

Thus, research on the expansion of hypergeometric functions in the cases of two
and many variables has been limited to second-order functions. This work is devoted
to the expansion of the Kampé de Fériet function in the form of an infinite sum of the
product of generalized hypergeometric functions of arbitrary orders. Note, at present
some applications of the Kampé de Fériet functions to the solving the boundary value
problems for singular partial differential equations [33; 34|, and integral representations
for the Kampé de Fériet functions [35] are known.
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2. Preliminaries

The celebrated Gauss hypergeometric function,

F(a,b;c;z)EF[a’b; z] ::imz—k c#0,—-1,-2,..., (1)

C; o (C)k k!’

is contained in the generalized hypergeometric function ,F, involving p numerator
parameters, ai, ..., a,, and ¢ denominator parameters, by, ..., by, as special case. Here,
the expression (a), called the Pochhammer symbol, is defined in terms of the gamma
function I'(s) by

ERNRCE.
(a)

For an integer k£ > 0 it is a product of the form
(a)o=1, (a)g =ala+1)...(a+k—-1), k=1,2,...

Following the standard notations and conventions, we define the generalized
hypergeometric function ,F, here as follows [24, p.182] :
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Here p and q are positive integers or zero (interpreting an empty product as 1), and we

assume that the variable z, the numerator parameters ay, ..., a,, and the denominator
parameters by, ..., b, take on complex values, provided that b; # 0,—1,-2,...; j =
1, ..., q.
Gauss’ series (1) in the present notation is
_ a, b;
oFi(a,b;c;2) = F o = F(a,b;c; 2).
?

If we set z = 1in (1), we obtain the well-known summation theorem of the F'(a, b; ¢; 2)
series of unit argument, due to Gauss

C(c)'(c—a—0)
I'(c—a)l'(c—10)

F(a,b;c;1) = Re(c —a —b) > 0. (2)
The great success of the theory of hypergeometric series in one variable has

stimulated the development of a corresponding theory in two and more variables. Appell
has defined, in 1880, four series [36]

Fy(a,b,t;cmy) = ) (a)(?;i);;!ib!/)%m?/n> (3)

m,n=0

Fy(a,b, Ve, sm,y) = Y (ELC);: Zg,?mng)g!"fvmy"? (4)

m,n=0

oy o (@ (@), 0 (V)
F3 (CL, a, b7 b G T, y) - Z (c)m+nm'n‘ T

m,n=0
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S (a)m n(0)min m, n
Fy(a,bye,diz,y) = ZO O +c’)nm!+n!$ y", (6)

which are all analogous to Gauss’ F'(a, b; c; z). Here, in all definitions (3)—(6), as usual,
the denominator parameters ¢ and ¢’ are neither zero nor a negative integer.

The standard work on the theory of Appell series is the monograph by Appell and
Kampé de Fériet [4], which contains an extensive bibliography of all relevant papers up
to 1926 (by, for example, L. Pochhammer, J. Horn, E. Picard, and E. Gursat). See [24,
pp. 222-45] for a review of the subsequent work on the subject; see also Bailey [37],
Exton [38], Slater [39] and Srivastava and Karlsson [40].

Seven confluent forms of the four Appell series were defined by Humbert [41], and
he denoted these confluent hypergeometric series in two variables by

o (i) = S dmn Oy g ”)

Rt (V) m4nm!n!

BBy

©y (8,8 7im,y) = Y Dl Y (8)
m,n=0 man i
P53 (8732, y) = i &xmy", (9)
m,n=0 (7)m+n m|n‘

(Vi (B

Uy (o, B3,y 52, y) = ) ™y, o) <L (10)
In!
m,n=0 <7)m(7/)nmn
B (i) = 30 iy (11)
m,n=0 (fy)m (P)/ )TL m:n:

(@) (@) (B

— /
Ei(a,d, By, y) = ™y, |x] < 1, (12)
m%:() (V) m!n!
- = (a),, (B)m
Zo (o, Bi752,y) = —me———a™y", |z| <1, (13)
m%:o (V) mIn!

where the denominator parameters v and 7’ are neither zero nor a negative integer. A
hypergeometric functions defined in (7) to (13) are called Humbert functions.

Just as the Gaussian series F'(a,b;c;2) was generalized to ,F, by increasing the
numbers of the numerator and denominator parameters, the four Appell series were
unified and generalized by Kampé de Fériet [10] who defined a general hypergeometric
series in two variables (see, [4, p.150, eq.(29)]). The notation introduced by Kampé
de Fériet for his double hypergeometric series of of superior order was subsequently
abbreviated by Burchnall and Chaundy [22, p.112]. Srivastava and Panda [12] (see,
also [40, Section 3.1]) gave the definition of the more general double hypergeometric
series (than the one defined by Kampé de Fériet) in a slightly modified notation
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: : (by) 5 (cr); ok a1, ... ay by, ... byl .., CL
F;g.?.q,k (ap) ( q) 73;,’ _ F;l,)'q’ ) y Up ) y Yg ) LT
l‘,r"s (al) : (/BT) ; (IYS); y l.’r’s al’ AR 7al : /817 AR 7/87‘;/}/17 AR ”YS;

where p, q, k,l,r,s € NU{0}, and for convergence,
i) ptag<l+r+1, p+k<l+s+1, |z]<oo, yl < oo,
or

(i) p+g=I1l+r+1, p+k=1+s+1, and

VT T <1, i p >
max {[z], [yl} <1, ifp<L.

Although the double hypergeometric series defined by (14) reduces to Kampé de
Fériet series in the special case:

g=k and r =s,

yet it is usually referred to in the literature as the Kampé de Fériet series.
In this paper we consider the following four Kampé de Fériet hypergeometric series

T O NS bt |

g e ] R R

all of which are analogous to Appell’s and Humbert’s functions.

3. Symbolic forms and expansions of Burchnall and Chaundy

For a given multiple hypergeometric function, it is useful to fund an expansion
formulas which would express the multivariable hypergeometric function in terms of
products of several simpler hypergeometric functions involving fewer variables.

Burchnall and Chaundy [21] introduce the operators

(W64 +h)
V(h>_r(5+h)r(5f+h)
and
T +h)I (" +hn)
A(h)_l“(h)l“((5+5’+h)’
where
(5:$£, 5 2
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Then V (h) (h)m(h)nz™y"™ = (h)minc™y", and so, if (h)m,(h), occurs in the numerator
of the coefficient of x™y", it is changed into (h),,1, by the operator V (h). The operator
A (h) effects a similar change in the denominator. Now Appell’s series can be obtained
from the product of two simple hypergeometric series by changes of this character
[4, p. 13] (see, also [37, p.76]) and we can therefore write symbolically

Fy(a,b,b;c,dsa,y) = V(a)F(a,b;c;x)F(a, b s y), (15)

Fy(a,d', 0,05 c;2,y) = Ale)F(a,bs e; ) F(d', U ¢;y),
Fy(a,b;¢,c5m,y) = V(a)V(D)F(a,b; c;2)F(a, Vs s y),

Fy(a,b,V;c;x,y) = V(a)A(c)F(a, by c; ) F(a, b c;y),

thus factorizing Appell’s functions by means of the operators V and A; we also obtain
transformations of Appell’s functions as

Fi(a,b,b;c;x,y) = V(a)Fs (a,a,b,b"; ¢, y)

Fy(a, b,V c;2,y) = A(e)Fy (a,b,V; ¢, ¢;,y)

Fy(a,bye,dsx,y) = V(b)Fy (a,b,b;¢,c5x,y)

and some others.

These symbolic forms are used to obtain a large number of expansions of Appell’s
functions in terms of each other, of Appell’s functions in terms of products of ordinary
hypergeometric functions, or vice versa. To give an example, by Gauss’ formula (2) for
F(a,b;c;1), we have symbolically

R "

Note, that for every analytic function f (z) the following Poole’s formula [23]

(=0), (7@} = (C1a (7))

is valid. Now,

(—0),.F(a,b;c;x) = (—1)" (a();)(i’)rer(a +rb+ric+rix),

and hence (15) suggests the expansion

Fy(a,b,b;¢,csx,y) = Z % X

xx’“yTF(a+r,b+T,c+7‘7:E) (a+rb +rd+ry), (17)

By inversion of (15) in the form

F(a,b;c;2)F(a,b'; s y) = Aa)Fy(a, b, b5 ¢, ¢ 2, y)
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and corresponding expansion of A(a), the companion to (17),

F(a,b;c;x)F (a,b; 5 y) = Z(_I)T% "

X"y Fy(a+rb+rb +ric+r.d +r;z,y)

is obtained. These expansions can be proved without symbolic methods by comparing
coefficients of equal powers of x and y on both sides.

By these methods Burchnall and Chaundy obtained 15 pairs of expansions
involving Appell’s functions and ordinary hypergeometric functions, as well as a further
considerable number of expansions involving hypergeometric series of higher order, and
Humbert’s confluent hypergeometric series, ®, ¥, and =.

4. Expansions of the higher order Kampé de Fériet series

Following the Burchnall-Chaundy method outlined in the previous section, we can
write symbolically

it |G =@ [0 o] o [B50] o

g [ G

H s () ()
= V@a@iFer | 00 o] pam [ 2] o
T B A R I (0 el I ik et RRCY

(22)

it [ oy o] = S@R b |G 2]

= (Bm) s () s G = (Bm) s () 5

We note further that on a generalized hypergeometric series we have

F2ak {al,aQ : (by) 5 (ck) o y] ¥ (ag) FLFLH41 {al L az, (by) ; az, (cx) o y] . (23)

1 a, (by) ; } 1 [ a, (by); }
— 1k A x| = — 1 By P T 24
(6 +a), [ a, (Bm) ; (@), ™ a1, (Ba) ; (24)
with similar formulae for the double series, provided that we replace ¢ by §’, § + 6" when
the parameter ¢ occurs with suffix n, m + n instead of m.
Again, in the coefficient of 2™y", 1/ (—a — 6 — ¢’ + 1), changes (a)p, into

(_1)7" (a)r(a — T)m-i-n

(a— 1)

Y
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so that, for instance,

1 Liq,k a: (by);(ck); B
(_a_é_(;,_'_l)TFl:m,n [a(ﬁm),(vn),x’y} =
_ 1y (a), Lgk  |a—1:(by); (ck) '
= ( 1) ((l _ r)2T'F1:m,n |: a: (5771) : (f}/n); 7y:| . (25)

Finally, we note that

(_5)rq+1Fm+1 { Z: ((bﬁqyls, :15} - (_1)T%xrq+lFm+l [ Z—{—l——:,ibﬁqm—‘_—:%; I} ) (26)

the corresponding results for the double series being sufficiently shown by the formula
: t(bg) 5 (cr) s
5 _g Fl.q,k [ a ( q) ) z, _
( )r( )r 1:m,n 053(ﬁm)§('7n); Y
B (a)ar (by), (i), oy Y qk { a+2r:(by+r);(ck+71);
- Iim,n xz,
(@)2r (Bin), (¥0), a+2r: (B +71);(m+7);

where 2r replaces r in association with the “double” parameters a, «, i.e. parameters
which have the suffix m + n in the defining series. Combining (25), (27) we find that

(=0), (=d"), gk | @i (bg)i(er);
(Ca—0-0+1), tmo {a:wm);(vn); "J]
gy (@) (by), (cr), oy Lok a:(bg+7);(ck+7);

= Y o o, (), = Y i szr Bt 7); (b 1)

Here, in all equations (26)—(28), and further until the end of this work, we accept
the following notation

v 1)

,y] (28)

ANo=1, (N, =AXA+1)..A+r—-1), r=1,2,..;

M)o=1, (A), =), (N), ... (N),, T v=1,2.;
Ag) = (A, Ag) s N+r)i=N+r o, AW+1), mv=12,...

We quote as lemmas the known identities [21]

L'(h)(m —i— n+h)

L(m+h)I'(n+h) ; (29)
F(m+h)(n+h) < (—m),(—n),
L(WC(m+n+h) ; (~h—m—n+1), (30)

Ny (R)2r(=m),(=1),

- ;( ) rl(h+ 7 —1).(m+ h).(n+ h),’ (31)
L(h)T(m+n+h)(m+k)(n+k)
D(m+h)C(n+h)D(E)D(m+n+k)

N (k= h)p(K)or(=m)r(=n),
R e NN e R (32)
_ io: (h = k)r(=m).(=n), (33)

rl(h)(=k —=m —n+1),

I
=)

r
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We illustrate our method by first considering a particular example. In (29) replace
m, n by 4, ¢, so that we have a symbolic form (16). Thus in (18) we have

i 5)7&2) r i1Fm { (Bfnb)q?; x} i F { ?%Sk) y} _
)

= a”b r,or,r +7b+ ; +a + ;
SOy [arn b ] e

(B +7) 5 (Y +7);

in virtue of (26), which gives F 3;5;” expanded in a series of products of generalized

hypergeometric functions. So far the argument has been purely symbolic, but we can
make a more convincing use of our material. Write C,,, ,S(x, y) to denote the coefficient
of zy™ in a double series S(z, y) with an analogous symbol for the simple series. Then, if
the expansion above is to be valid, we must have, on equating corresponding coefficients
on the two sides,

gk | @ (bg);(cr); _ (@) (by), (cx),
CmnF o [—  (B): () xy] = 2 (B, ), S

a+r,(by+1); a+r,(c+71);
><(1+1F1m [ (ﬁm‘i‘?”); x k+1Fn (’Yn+T); vl - (34)

But, from the definition of F§/%*  or equivalently by (18)

0:m,n>

tgk | a:(by);(ck); ~ T(a)T'(a+m+n)
Cran Lo [— (Bm) 5 () ;x’y} " T'(a+m)T(a+n) 8

a, (bg) ; a, (cr) ;
XCm,anrlFm |: (ﬁr(n)q? JJ:| k+1Fn |: (Vr(L)ka) y:| )
and we can replace (26) by

(—=m), Cpn Foik. {_a :: féff{f(ciiﬁ my] -

— (_ r(a>'r’(b)r a—+r, (bq‘l'T), .

and the similar formula in y. To complete the proof of (34) we need then only to employ
(29) in m, n as written.

Thus, if in the symbolic analysis we replace §, ¢’ by m, n, we can adapt the argument
to give term-by-term identification of the two sides of the presumed identity.! This is
perhaps obvious from first principles, for, in operation on 2™y", §, ¢ become replaced by
m, n. Now in the term-by-term identification we are, in fact, rearranging the summation
of a multiple series. This we justify later by considerations of absolute convergence. For
the present we are content with purely formal results, and, as we have just seen, these
are adequately established by the symbolic analysis.

'We may note that with m, n positive integers the summations in the five lemmas become the finite
sums from 0 to min(m,n).
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Then from the six identities (18)—(23), if we use (29), (31), (32) to express V, A |
VA and we shall need to appeal to the principles of (24) and (26) or (27), we obtain six
expansions including the expansion for F; given above. By inverting these we obtain a
further six. Thus we can rewrite (18) as

e R A R v R L R B
and so on. We must now use (30), (33) instead of (31), (32) to give A, VA, and we shall
need to appeal to the principle of (25) or rather (28). These six inverse expansions lack
full generality in the sense that the hypergeometric function to be expanded necessarily
has a pair of parameters equal.

We now state these fourteen expansions without further proof, putting each inverse

series directly after the corresponding direct series and arranging the six pairs in the
order of the identities (18)—-(23).

5. Twelve expansions

Next twelve expansions can be proved without symbolic methods by comparing
coefficients of equal powers of x and y on both sides:

v [as0)ie); ] = @b, @),
A R ]‘Zor!wm)rm)r v

a+r,(by+7); a+r,(cx+7);
><Q-‘rlF‘m |: (6m+r); x k+1Fn ('Yn‘f‘T); yl,

oot Gt s [57°] -2 s

v orptgk (a1 (bg+7); (e +1);
F [ (B4 7) (1) ’yl

var [ 000, T D G, (),
& [  (Bm) 5 () yl 2Tt Ul Gy G,

(b, +7’ (e +71);
XgFmi1 ); 71 kg a+2r,(*yn+r);y ’

ot { f(qugﬁm) x] i { géCk()'yn) y} - i:: T!(a/)r((obs); Ecﬂi) (),
{ — by tr)i(e )y y}
o | 20 (B4 1) (g +7) 5

Lk | @ (bg);(ck); - (a)r (o —a), (by), (ck), T %
F [a:( ),xy}_zr'(

mon s (Bn) s () 5 @+ 7 — D) (@)ar By (1), ©

a+r, (ck+7); }

a+r,(by+r1);
).I k—HFn—H Oé+27’,(")/n+7’);y

X g1 Fm41 { @+ 2r, (B + 1)
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(), (0)r e [ atr: (gt 7): (et v);
me Y Fl:m,n [a+27‘(ﬂm+7“)7(%+7“)7 ’y:|7

1:q,k a: (bq) ; (Ck) ; :| _ - (a)T (bq)r (Ck)r
Frim {a 2 (Bm) 5 (1) 536’ Y ; ri(a)ar (Bm), (),
e 0:ig+1, —a+nr,(bg+7r);a+r(cp+7);
Sl B RT AR |

0:q+1,k+1 | — - @, (bq) ; @, (Ck) 7.ZU o OO _1\T (CL)T (bq)r (Ck)r
Flim.n { a: (Bm); () ’y] - ;( b A @)ar B, (1),
roroligk a+r:(bg+r);(ck+71);
Xxyﬁhmm{a+2rw@n+w;@n+m;’4’

l:q,k
F :qv

a:(b)ile)s 1% (=1)"(a)2r (by), (cx),
{O‘ D (Bm) s (W) 5 ’y:| B Z rla+r —1).(a)s (ﬁm)r ('Vn)r

v Lk a+2r:(bg+1);(ck+7);
XTY Fomiins {—:a+27“,(5m+7‘);0z+2r,(7n+r); Yl

a:(by);(c); - a)or (bg), (Ck),
(bg) 5 (cx) }:Zr!()()() y

1:q,k xT
Fomtins [_ Lo, (Bm) s, () ; Y — (@) (@)2r (Brm), (),

rpliak {a+27‘f(bq+r>;(0k+7”);.x’y}’

XTY Lim,n a+2r:(Bp+71)(Wm+r)

2.0k [a1,02 1 (bg) ;5 (ck); = (@1),y, (ag), (by), (cx),
Fm[ = (Bn) i () “’1 ED D e

g1kt [al +2r:ag+r,(by+r);as+ 7, (e + 1) o y}

xx"y" Fy,
Yo =+ (Bn 1) On +1);

Lag+1k+1 |1 0 az, (bg);as, (ck); _ = 1\ (a’l)2r <a2)r (bq)r (Ck>r
m [ =LV TG

: +2r,a0+1: (by+71); (ck+71);5
r T‘FQ‘q,k 5] ) q ) ) )
X y O,m,n[ — (5m+7'),('.}/n+7n), x7y
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