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Abstract. In this paper, hypergeometric function of Lauricella Fé") has been investigated. The
new properties of which are established and applied to the solution of the Dirichlet problem for the
three-dimensional degenerate elliptic equation. Fundamental solutions of the named equation are
expressed through the Lauricella hypergeometric function in three variables and an explicit solution
of the Dirichlet problem in the first octant is written out through the Appell hypergeometric function
F5. A limit theorem for calculating the value of a function of many variables is proved, and formulas
for their transformation are established. These results are used to determine the order of singularity of
fundamental solutions and to prove the truth of the solution to the Dirichlet problem. The uniqueness
of the solution to the Dirichlet problem is proved by the extremum principle for elliptic equations.
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1. INTRODUCTION

It is known, that a special functions are used for solving many problems of mathematical physics (see
[4, [18]). These include the Gauss hypergeometric series, Bessel and Hermite functions, Lauricella hy-
pergeometric functions, etc. The Hermite functions are actively applied in algorithms and information
systems that are used in medical diagnostics [16]. The Bessel functions are used in solving a number of
problems of hydrodynamics, radiophysics, and thermal conductivity [14, Part 2]. Some functions that
are used in astronomy can be arranged in hypergeometric series [20, Chapter 3]. Multidimensional
hypergeometric functions are used in the superstrings theory [5].

The study of boundary value problems for degenerate equations is one of the important directions of
the modern theory of partial differential equations. It is known that in the formulation and construc-
tion of local and nonlocal boundary value problems solutions, the main role is played by fundamental
solutions. Fundamental solutions of the two-dimensional degenerate elliptic equations are expressed
by the Appell function F,, and when the dimension of the equation exceeds two — by the Lauricella
hypergeometric function Fj,") with three and more variables.

In this work, the established properties of the Lauricella function are applied to solving the Dirichlet
problem for the three-dimensional degenerate elliptic equation

Yy 2 U, + a:"zkuyy +2"y"u,, =0,m>0,n>0k>0 (1.1)
in the domain Q = {(z,y,2) : 2 >0, y >0, z > 0}.
A degenerate elliptic equation (1.1)) is related to an elliptic equation with the singular coefficients

2a 203

2
Upg + Uyy + Uy + —Uy + —uy + Vuz =0, 0<2a,28,2y < 1. (1.2)
x Yy

z
Namely, if in the region of ellipticity the equation is reduced to a canonical form, then we obtain
equation . Using the fundamental solutions constructed in [9], the main boundary value problems
for the equation in the finite (first octant of the ball) were solved in explicit forms [10, 11}, 22], and
local and nonlocal boundary value problems for the equation by the Fourier method in special
infinite domains were investigated [12} 13].

Few works are devoted to the study of boundary value problems for the two-dimensional analogue
of the equation . In works [1, [19], for the two-dimensional degenerate elliptic equation

Y " Upy + 2" Uyy = 0,m >0,n >0
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solutions of the Dirichlet and Neumann problems in the bounded and unbounded domains were found
in explicit forms.

2. MULTIPLE HYPERGEOMETRIC FUNCTIONS AND THEIR SOME NEW PROPERTIES

The Gauss hypergeometric function can be represented by the following series [0, p.56, Eq. 2.1(2)]

F(a,b;c;x) = Z (a)m(b)mi:, lz] <1, (2.1)

= O

where (z), is a Pochhammer symbol: (z), = z(z +1)...(2 +n—1), n=1,2,..; (2)o = 1.

The great success of the theory of hypergeometric function in one variable has stimulated the
development of corresponding theory in two or more variables. Appell [2] has defined four functions
F, to F,, which are all analogues to Gauss’ F(a,b; c;x). For instance, the Appell function F, has a
form

a,b,b; = mnb b xmyn
FZ[ ! Q:c,y]zz()+(1) (ba), —ron lel gl <1, (2.2)

C1, Co; =0 (Cl)m (Cg)n
which satisfies the following system of partial differential equations [6, p. 234, Eq. 5.9(10)]:

(1 — @)Uy — TYUgy + [c1 — (@ + by + 1) 2] up—b1yu, — abyu = 0,
Y(1 — y)uyy — YUy — bozuy+ [c2 — (@ + be + 1) y] u, — abou = 0.

Lauricella hypergeometric function[I5] (see also |21, p. 33])

n

n b;
FA)|:G’C. X:| Z \k|H kk_|7

’ |k|=0

o] <1

is a natural generalization of the classical Gauss hypergeometric function (2.1)) and the Appell function

(2.2) to the case of many complex variables and their corresponding complex parameters. Hereinafter
b= (by,....,bn), c:= (1, .0y Cp) , X 1= (T4, 0oy Tn)

K= (ki, ., kn), [K| =k + oo+ ko, ko >0,.. K > 0.

Let us list some properties of the Lauricella hypergeometric function FIE,”):
1) tranformation formula [3, p. 116, Eq. (9)]:

m | a,b; | _ —a () | @, c—b; X R
Fy [ c: X}—(I_X) Fy { . X—l]’X'_Z%’ (2.4)

I Cﬂ

2) differentation formula:
d _m [ a,b; aby, a+1,by+1;
8xkF { (¢ X} Cr F ¢y +1; X

where the vectors by, + 1 and ¢, + 1 appear, the k-th component of which is one greater than the
corresponding components of the vectors b and c, respectively:

(2.5)

bk + 1:= (bl, -'-7bk—17bk' + 1,bk+1, 7bn) , Ck + 1:= (Ch ooy Cle—1,Ck + 1ack+17 ...,Cn) 5 k= 1,7’L.

The Lauricella hypergeometric function of n variables satisfies the system with n equations
and this system has 2" linearly independent solutions (for details, see [3 pp. 117, 118]). In
our further studies, we use the following system corresponding to a function of three variables

_ 3 a, b17b27b3; .
u="F C1, C2, Cs; DA
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(1 — 2)Upy — TYUyy — T2U,, + [€1 — (a + by + 1)x]uy — biyu, — bizu, —abju =0,
Y(1 — y)uyy — TYUyy — Y2Uy, — baxu, + [c2 — (@ + by + 1)ylu, — bozu, — abyu = 0, (2.6)
2(1 — 2)uy, — T2Uyy — Y2Uy, — byzu, — byyu, + [c3 — (a + by + 1)z]u, — absu = 0.

The PDE-system (2.6 has 8 linearly independent solutions [3, pp. 117, 118] :

3) | a,b1,b,bs;
1{FA |: c1,Ca, C3; x,y,z|, (27)
1—cy (3) [ a+1*61,b1+1*61,b2,b3;
LA Y - 2 — ¢y, Cy, Cs: x,y,zl ,
1oy (@) | @+ 1 —coybi, by + 1 — co, bs;
3 Y FA I 01,2—62,03; CUaZ/J- ) (28)
1—c3 (3) a+1_637b17b2ab3+1_63;
o FA 61702,2—03; ':U’y’Z_ ’

leepteey @ | @+ 2= — o, by +1— ¢, by + 1 — o, bs; ]
o Y FA L 2_0172_02763; LY
ey 1oeap(® | @+ 2—cy—c3,b1,00 +1—cy,b3+1—cs;
3 y z 3FA A 01,2—02,2—03; xayvz- ) (29)
ey des® | @a+2—c1—c3,b1 +1—ci,by,b3+1 —cs;
T TRy 2 — ¢y, 0,2 — 50 :U,y,z_ ,

a+3icl7027637()1+1*Cl)b2+1702,b3+1—63;
2—c,2—0c3,2—cs; z,y,z|. (2.10)

1 {xl—cl yl—CQZl—CgFjgg)
It can also be shown by direct calculations that the functions (2.7)) — (2.10]) satisfy the system ({2.6]).
3. FUNDAMENTAL SOLUTIONS OF A DEGENERATE THREE-DIMENSIONAL ELLIPTIC EQUATION

Let (z,y,z) and (§,n,¢) be two points of the domain Q. We are looking for a solution of the
equation ([1.1)) in the form

u=r"2"2"1"1, (p,0,0), (3.1)
where w is a new unknown function,
n 3 m k n+2 m+ 2 ) k+2
o= ———- = = : = = = :
4z9€? 4yPnP a2t¢t 1 2 1 2 1, e
p = _W7 0= — p27‘2 Y 0 = - l2T2 ) ro= ? (xq - éq) + ]? (yp - np) + ﬁ (Z - C ) *

It is obvious that
0<2a<1, 0<26<1, 0<2y<1; g>1,p>1,1>1.

Substituting (3.1]) into equation (|1.1]), we obtain a system of differential equations of hypergeometric
type

p(l —P) wpp_pawpa_pewp0+

+ 20— 2a+B+7+3)p|w, —aow, —abwy —a(a+B+7+3)w=0,
0 (1= 0)Woe — Pow,y — 0w+

+ 28— (@ +28+7+3)0]ws = Bpw, — Bwy — B (a+ B+ +3) w=0,
0 (1 —0)wpp — pOw,g — oOwo+

+[2y—(a+B+2v+2) 0wy — ypw, —yow, —y (@ +B+v+3) w=0.

Comparing the system (3.2)) with the system (2.6) which has 8 particular solutions, we obtain [9]

(3.2)

,QafggfgryleIgS) 1/2 +a+ B + v, q /87 v 0,0, 4 , (33)

qo (1’7%23577770 = ]{707' 2&,25,2’}/,
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0 (2,9, 2 €,1,C) = kyagr?e 222 pd) [ 32~ O;t”g;;;g;aﬁv p,0, 9] 7 (3.4)

Q1 (,y, 26,1, C) = kpynr-2e+20-2=3p@) { 3/2+ O;; gfgﬁa%l_ 5 o, 9} ,  (35)

Q2 (7,9, 2;6,1,¢) = k122’C7‘_2a_2ﬁ+27_3F§3) { 3/2+ C;;: gﬁjg%_ag’f; 1= P, 0, 9} ) (3.6)

G (2, Y, 2 €,1,C) = kawylnr>* 27~ F Y [ 52 - ‘;:QJ;_IQ_/BQQ;_ 57 e 9} , (37

a— — é 52—Oé+ﬁ— ,1—06,,6,].— )
421 (CC, Y, z; 577’7 C) = k21$Z€<T2 SRy SF‘S‘S) l: / 2 — 20[, ;67 2 — 2’77 ! e 0:| ’ (38)

—2a — : 52+a_/8_ ,Oé,l—ﬂ,].— ;

Qo2 (2,9, 26,1, C) = kaaynCr—2et274 st(xd)[ / 2a,2—;5,2—27; ! p,g,e], (39)
a — 72—Oé—ﬁ— 71_a71_671_ ;

g3 (x,y,2:6,1m,¢) = kszyzEnCroe 20+ 7F1(43){ / 2—2a,;— 28,2 — 2v; ! p’a’e]’ (3.10)

where ky,..., k3 are constants, which are determined when solving boundary value problems for the
equation .

It is easy to see that the each of three particular solutions ¢;, ¢;1 and ¢, are symmetrical to each
other with respect to the numerical parameters of the Lauricella function. Hence, in further studies
there is no need to consider the functions ¢;; and ¢, i.e. we omit them and study only the function
q1. Similar propositions can be made about the second trio of particular solutions ¢s, g21 and goa: we
study only ¢z, and omit the functions ¢»; and gos.

It is easy to see that the constructed functions ¢qq, ¢:, ¢ and g3 have the following properties:

9 0.9 9
o qo s 4o 92 q1

0
o 8y o ) Q1|m:0 ) 8yQ1 ) )

-0, —
0z o =0

y=0 y=0

=0 QS‘I:O =0, QS‘y:() =0, Q3‘Z:0 =0.

0
q2|1:0 = 07 q2|y:0 = 0; &(h -

Note, these properties will be used in solving four (Neumann, two Dirichlet-Neumann and Dirichlet)
boundary value problems for the equation (1.1).

1
Lemma 3.1. If 0 < 2a,20,2v < 1, then every function q, (k =0,3) has a singularity of order — as

r
r—0.

Proof. To give an example, we consider function gy. The order of singularity of the remaining functions
is determined similarly.
In the case of three variables, the transformation formula (2.4) takes the form

b1, ba, bs; _
) a, 01, 02, b3, zy, 2l =(1—2—y—2)"x
A C1, C2, C3; 4 ( 4 )

» F,f’) [ a,cy — by, c3 — b, c3 — bs; L y i (3.11)

C1, C2, C3; r4+y+z—1Uz+y+z—1z+y+2—-1]"
Using the transformation formula (3.11)), the function gy defined in (3.3)) can be reduced to the form

1 *
do (357972’;57"770 :;qo (xaywz;ganag)v (312)
where
1A
N . o sacopeay ) | @+ BAYH1/2,a,8,q; 4x1€T AyPnP 4z'C
9 (2, y,2:€,m,C) = koo Fy 2c, 2[3, 27; Po?’ pPo? 12e? |’ (3.13)
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1 2 1 2 1 2
o= ?(xq‘i'{:q) +E(yp+"7p) +l3(zl+cl) :
We must show that the value of ¢ (x,y,2;¢,7,() asr — 0,1ie. x =&, y —n, z — (, is bounded.
According to the theory of Lauricella hypergeometric functions [3, Chap. VII], if the sum of the
absolute values of the variables is less than one, then the function F{" is bounded for any values of
the numerical parameters. In the case of three variables, this statement looks like

< oo, |z + |yl + |2 < 1. (3.14)

Flg?)) |: a, b17 b27 b37

C1, C2, C3;

a’"? y? Z:|

By virtue of (3.14)), it is obvious that in (3.13)):
4987 AyPpp 42

<1,
q2 92 p2 92 l2 92
therefore the following inequality is true
« C
45 (%,y,2:€m, Q) < Frarzgrz "0 (3.15)
where C' = const > 0 and . 1 )
R2 — ?1,2(1 + EyQQD + ﬁle' (316)

1
Now from (3.12)) and (3.15) follows that the function gy has a singularity of order — as » — 0. The
T
Lemma |3.1|is proved. O

Based on the Lemma we conclude that the particular solutions defined in (3.3) — (3.10) are
fundamental solutions of the equation ([1.1)).

4. STATEMENT OF THE DIRICHLET PROBLEM AND THE UNIQUENESS THEOREM

Dirichlet problem. Find a solution u (z,y, z) of the equation (L.1]) with the regularity C' (€2) N C? (Q2)
that satisfies the conditions

u(xvyaz)‘z:OZTl(xvy)7 0§$7y<00a
u(m,y,z)\y:O:Tg(m,z), 0<x,2< o0,
u(x7yﬁz)‘$:0:7-3 (yvz)a 0§y,z<oo,
lim u(z,y,2)=0,
R—o0

where Q = {(z,y,2) : >0,y >0, 2 > 0}; R is defined in (3.16)); 7, (v, 2) , 72 (z, 2) , 73 (7, ) are given

continuous functions in a closed domain and have representations

71 (x,y 5
T (z,y) = (1 - 12( L )1 . ) Ti(z,y) € C(0 <,y < 00), (4.5)
+ Zx + Sy
q p
7 (z,2) = (1 17-22(:5,2)1 21)527 To(z,2) € C(0 < 2,2 < 0), (4.6)
+ ST+ 5z
a2 2
BWE) sy €00 <,z < o0), (4.7)

7—3(y7z): (1+L 2p+i 2l>
»Y 1ZR

where €, &5, €3 are a real numbers with o + 4+ v < g1, €9, €3 < 2.
In addition, the functions 71 (x,y), m2(z, 2) and 73(y, 2) satisfy the matching conditions at the origin:
71(0,0) = 72(0,0) = 73(0,0) and at the lateral edges of the domain Q:

7'1(%,0) = 7'2(%,0), Tl(ovy) = T3(y70)7 7—2(072) = 73(072)? T,Y,%2 € ﬁ
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Theorem 4.1. The Dirichlet problem can have at most one solution.

Proof. To prove Theorem [4.] it suffices to show that the corresponding homogeneous Dirichlet problem
has a trivial solution. For this purpose, the finite part of the domain €2, bounded by the planes
x =0,y =0, 2 =0 and the sphere oy :

1

1 1
?$2q+ﬁy2p+l—2z2l:R2, z>0,9y>0,2z>0,

we denote by Qg. Let
71 (y,2) =72 (z,2) = 73 (2,9) = 0. (4.8)

Then the validity of Theorem- 1| follows from the extremum principle for elliptic equations [I7), p. 12].
Indeed, the function u (x,y, z) in the domain Qg, by virtue of ., can reach its positive maximum
and negative minimum only at .

Let (z,y, z) be an arbitrary point in Dr. We take an arbitrary small number £ > 0 and, considering
([4.8), we choose R large enough that |u (z,y,z)| < € on 0o. For R large enough, this point falls in Dy
and therefore |u (z,y,2)| < €. Since ¢ is arbitrary, we have u (x,y, z) = 0. Then u (z,y,2) =0 in D.
The Theorem is proved. O

5. EXISTENCE OF A SOLUTION TO THE DIRICHLET PROBLEM

Consider a function

w(z,y,z) = / / 577 (L, 5) ;ng <w,y,z;t,s,<>] dtds+
0 0 ¢=0

+//tn8k7'2 (t,s) il dtds+//tmsk73 (t,s) = a3
00 O li=o

where g3 (z, y, z ;€,1m,¢) is a fundamental solution defined in . Applying a differential formula
. from we get the following function:

dtds, (5.1)

U (1’, Y, Z) = (.%',y, 2) + Ug ([IZ, Y, Z) + us ($7y7 Z) p (52)

Ty (t,s) "™t 6, 1—a,1—p; 4zt 4yPst)
uy (z,y,2) = k,gmyz// F, 9 20, 2— 28 q2r2 —_, = ey dtds, (5.3)

_ Ty (L, 53) 1A 8, 1—a,1—r;  4dz9t1 428
Usg (-717:% Z) = kszyz // F 2 —2a, 2 — 27; - E, _W_ dtds, (54)

73 (t, ; th h 5, 1—-5,1—n; 4y”tp 4215
uz (x,y,2) = kzgxyz// F, 298, 2 2. 2 ’_W_ dtds, (5.5)

iq—2+2a —2+2/3l—2+2'yr (1-a)l'(1—-8)T(1—~)T (6 —2a—28—27)

ko — 5.6
57 or P T(2—20)T(2-28)T(2—2)T(B3-—a—B—7)’ (56)
7 1 1 1
(5:5—@—,3—7; r%:?(mq—tq)2+7(yp—8p)2+l222l
1 1 1 2 1 1 1 2
2:7 q_tq2 = 2p - [N 2:72q _tp Il .
7”2 q2 (',B ) +p2y + lg (Z 8) ’ 7”3 qQ'T +p (y ) + l2 (Z 8)

Here Fy is Appell hypergeometric function defined in (2.2)).
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Lemma 5.1. If the function T (x,y) can be represented as . then the function uy (x,y, z) defined
by equality (5.3)) is a reqular solution of equation in the domain Q satisfying the conditions (4.4)
and

ul(a:,y,O) = Tl($7y)7 'U,l(.’L',O, Z) = 07 u1(07y7 Z) =0. (57)

Proof. First let us prove that the function (5.3|) satisfies the degenerate elliptic equation ((1.1)). For
this purpose, we consider the auxiliary function

W (z,y, z;t,8) = zyzr; w(d, ), (5.8)
where
o 5,1 — B; _ 4t _ 4ys
(/.)(19,§) .—F2 2 _ 9 2_25719 s 19——7%,§——T—%.

We calculate the necessary derivatives of the auxiliary function W with respect to the variables
x, y, z and substitute them into the degenerate elliptic equation (1.1). As a result, we obtain the
relation

y" 2" Wo, + o szyy + z"y"W,, =
= Pyzr;] P {01 — Pwgy — Iswoe + [2(1 —a) — (2 — a4 6) 9wy — (1 — a)dw}
—l—:Eg,ZT‘;Q“ {§(1 - g)w“ - 19§w19§ + [2(1 - B) - (2 - 5 + 5)§] We — (1 - ﬁ)éw} = 07

which is equivalent to the following system of hypergeometric equations

I(1 — DNwyy — Iswye + 2(1 —a) = (2—a+6) Y wy — (1 — a)dw =0,
§(1 - g)w<< - 19§w19< + [2(1 - B) - (2 - B + 5)d We — (1 - 6)5‘*‘) =0.

Comparing the last system of equations with the system of equations ([2.3|) for the Appell function Fs,

we can conclude that the function ([5.8)) is a solution of the corresponding degenerate elliptic equation.

Consequently, the function u;(z, y, z) defined by (5.3)) satisfies the degenerate elliptic equation (1.1]).

Now we prove that the function wu;(x,y, z) satisfies the boundary conditions (5.7)). Indeed, intro-
ducing in the integrand in (5.3) instead of ¢ and s new variables

L7 —at) (s —y")
R

lu:

9

we obtain

! l
uy (x,y,2) = 126-2} myz2l(a+6 2) / / l“q —{—,uqz /l) (yp + vgz /l)

lx? lyP L+t +V2)

gz pAt
| 6 l-al=p; 4Pz (29 + pg2' 1) APyP (yP + vpzt/l)
X — _
2 -2, 220, P22 (1 +p2+02)" p222 (1 + p? 4 12)

XTy [(xq + ,uqzl/l)l/q (y? + ypzl/l)l/p} dudv.

Taking the expression (5.6)) into account for the coefficient k3, considering the well-known formula
for calculating the double improper integral [8, p. 633, Eq. 4.623]

o

//cp(a +b22d$dy— /
00

0

and Legendre’s duplication formula [0, p. 5, Eq. 1.2(15)],

222—1

res) ==~ I‘(z)I‘(z + ;)
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we obtain
lin}) uy (z,y,2) =11 (2,9) . (5.9)
z2—

Using the similar transformations, we have

lin% u (z,y,2) =0, lin(l) uy (z,y,2) = 0. (5.10)
z— y—

Therefore, based on equalities (5.9) and (5.10) we conclude that the function u,(z,y, z), defined by
, satisfies conditions

Let us show that if given functlon 71 has representation (4.5), then the function u;(z,y, z) defined
in . tends to zero at infinity.
Using the transformation formula for Appell function F» [0, p. 240, Eq. 5.11(8)]

F2 a7b17b2; z,y :(1—$—y)_aF2 a7cl_61762_b2; z ’ Yy ,
C1, C2; C1, C2; r+y—1z+y—1

we write the function (5.3) in the form

Tl t S tn+1 m+1 (5, 1—a 57 4x9td ypsp
(«73 Y,z2) = kayz// F2 2 . 20[7 2 . 2ﬂ, q p2 7p7p2 dtdS, (511)

where

1 1 1
p2: ?(xq+tq)2+E(yp+sp)2+f222l'

It is easy to see that in the following inequality holds
4x9t9 4ypsp
@ P

Let us prove that when the point (x,y, z) tends to infinity, i.e. when R — oo, the function

tends to zero. It known from the theory of Appell functions [2], that, if |z| + |y| < 1, then for any
values of the numerical parameters the Appell hypergeometric function F5 is bounded:

<1, >0,y>0,2>0,t>0,s>0.

| F2 ((I, b17b2;cl7c2;$7y) |S Cl’ |l’| + |y| <L
Next, applying the representation (4.5 for given function 7 (x,y), we obtain

’ | < o // tn+18m+1dtd8 (5 12)
Uy 2LY=z 1 7/2—a—B—v" '
(14 ot L) [ (o g0 4 & (g ) 4 422

Substituting ¢ and s for

in the last double improper integral ([5.12]), we get

@G r oy
R261—2a—26—2fy R R

where €; > a + 5 + 7 (see condition in (4.5 ) and

TT prdudy
K(w7y;R)=// — e (5.14)
0o (u2 v )" (1 4024 2204 2

- K (z,y; R), (5.13)

‘Ulf <

= e

It is easy to show that the double improper integral on the right-hand side (5.14]) is bounded as
R — o0. Indeed, using the formula [7]
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—+oo

+oo

/ / 2 Pty da,

S ()™ e ()™ [ ()™ 4 (rawa) ™)
N—_——

n

:F(pl/(h)-"F(pn/Qn)F(P_t)F(S—’_t_P) P:&—i‘ _‘_Zﬁ
GG TP T ()T (s) @ G’

where py., qi, 7, and s are positive numbers (k = 1,n), 0 < P —t < s, and passing in (5.14]) to the
limit as R — oo, we obtain

lim K(;p,y’R):F(2_51)F(3/2—Q_IB_7+61)

2. 1
o w@2-a-g-y 0 CTPTrsas (5.15)

Thus, by virtue of (5.13) and ([5.15)) the following estimate is valid:

Cy

lup| < R a )

a+fB+v<e <2, R— oo (5.16)

Considering (5.16[), we conclude that the function (5.3)) vanishes at infinity. Lemma is proved. O

Remark 5.2. Repeating the arguments given in Lemma [5.1] one can prove two lemmas concerning
the functions usy(x,y, z) and uz(x,y, z) defined by equalities ([5.4]) and , respectively. Thus, if the
representations and are valid for the given functions 75(z, z) and 73(y, ), then each of the
functions us(x,y, z) and usz(z,y, z) is a solution to the degenerate elliptic equation that vanishes
at infinity and satisfies the set of conditions

uz(x,y,()) = 07 ’LLQ(.%',O, Z) = TQ(JJ,Z), u2(07yaz) = 07

US(xayv O) = 07 ’LL3(Z‘,O, Z) = 07 u3(0,y, Z) = TS(ya Z),
respectively.

Theorem 5.3. If given functions 1 (x,y), m(x,2) and 73(y, z) have the representations (4.5)), (4.6))
and (4.7), respectively, then the function u(x,y, z) defined in (5.2) is a reqular solution of the equation
(1.1) in the domain Q2 satisfying the conditions (4.1) — (4.4).

Proof of Theorem [5.3] follows from Lemma [5.1] and Remark 5.2

REFERENCES

[1] Amanov D. Some boundary value problems for a degenerate elliptic equation in an unbounded domain.
Izv.AN UzSSR, Ser.Fiz.-Mat.Nauki, -1984. —-1.— P. 8 — 13.

[2] Appell P. Sur les séries hypergéométriques de deux variables, et sur des équations différentielles linéaires
aux dérivées partielles C.R. Acad. Sci., Paris, — 1880.-90. — P. 296 — 298.

[3] Appell P. and Kampe de Feriet J. Fonctions Hypergeometriques et Hyperspheriques; Polynomes d’Hermite,
Gauthier - Villars. Paris. — 1926.

[4] Bers L. Mathematical Aspects of Subsonic and Transonic Gas Dynamics Wiley New York. — 1958.

[5] Candelas P., de la Ossa X., Greene P., Parkes L., A pair of Calabi-Yau manifolds as an exactly soluble
super conformal theory. Nucl. Phys., — 1991. — B539. — 21 — 74.

[6] Erdélyi A., Magnus W., Oberhettinger F., Tricomi F. G. Higher Transcendental Functions 1, McGraw-
Hill, New York, Toronto, London. — 1953.

[7] Ergashev T. G., Tulakova Z. R. The Neumann problem for a multidimensional elliptic equation with
several singular coefficients in an infinite domain. Lobachevskii Journal of Mathematics,— 2022. — 43(1). —
P. 199 — 206.

[8] Gradshteyn I. S., Ryzhik I. M Table of integrals, series, and products Academic Press Amsterdam. — 2007.



82 Hasanov A., Ergashev T.G., Djuraev N.

[9] Hasanov A., Karimov E. T. Fundamental solutions for a class of three-dimensional elliptic equations with
singular coefficients. Applied Mathematics Letters,— 2009. — 22. — P. 1828 — 1832.

[10] Karimov E.T. A boundary value problem for 3D elliptic equation with singular coefficients. Progress in
analysis and its applications, — 2010. P. 619 — 625.

[11] Karimov E. T. On the Dirichlet problem for a three-dimensional elliptic equation with singular coefficients.
Dokl.AN Uz, — 2010. — 2. - P. 9 — 11.

[12] Karimov K. T. Nonlocal problem for an elliptic equation with singular coefficients in a semi-infinite
parallelepiped. Lobachevskii Journal of Mathematics, 2020. — 41(1). — P. 46 — 57.

[13] Karimov K. T. Boundary value problems in a semi-infinite parallelepiped for an elliptic equation with
three singular coefficients. Lobachevskii Journal of Mathematics, — 2021.— 42(3).— P. 560 — 571.

[14] Korenev B.G. Introduction to the theory of Bessel functions. Nauka, Moscow, 1971 (in Russian).

[15] Lauricella G. Sulle funzioni ipergeometriche a piu variabili Rend. Circ. Mat. Palermo, — 1893. — 7. — P.
111 — 158.

[16] Mamayev N.V., Lukin A.S., Yurin D.V., Glazkova M.A., Sinitsin V.E. Algorithm of nonlocal mean based
on decompositions via Hermite functions in problems of computer tomography. Proceedings of the 23rd
Inter. Conf. on Comp. Graphics and Vision GraphiCon2013, Vladivostok, Russia. (2013) Sept 1620, P.
254-258 (in Russian).

[17] Miranda C. Partial Differential Equations of Elliptic Type Berlin Springer. — 1970.

[18] Niukkanen A.W. Generalised hypergeometric series arising in physical and quantum chemical applications.
J. Phys. A: Math. Gen., — 1983. — 16.— P. 1813 — 1825.

[19] Salakhitdinov M. C., Hasanov A. Tricomi problem for a mixed type equation with a non-smooth degeneracy
line. Diff. Uravn., — 1983. — 19(1).— P. 110-119.

[20] Smart U.M., Celestial mechanics. Longmans, Green and Co, London - New York - Toronto, 1953

[21] Srivastava H. M. Karlsson P. W. Multiple Gaussian hypergeometric series New York, Chichester, Brisbane
and Toronto Halsted Press (Ellis Horwood Limited, Chichester), Wiley. — 1985.

[22] Tulakova Z.R. Spatial mixed problems and Neumann problem for the three-dimensional elliptic equation
with the two singular coefficients. Uzbek Math. Journal, — 2024. — 68(3). P. 150-157.

Hasanov A. ,

Department of Differential Equations and Applica-
tions, V.I.Romanovskiy Institute of Mathematics,
Uzbekistan Academy of Sciences, Tashkent, Uzbek-
istan

Department of Mathematics, Analysis, Logic and Dis-
crete Mathematics, Ghent University, Belgium

email: anvarhasanov@yahoo.com

Ergashev T.G. ,

Department of Differential Equations and Applica-
tions, V.I.Romanovskiy Institute of Mathematics,
Uzbekistan Academy of Sciences, Tashkent, Uzbek-
istan

Department of Higher Mathematics, National Re-
search University " TITAME” Tashkent, Uzbekistan
Department of Mathematics, Analysis, Logic and Dis-
crete Mathematics, Ghent University, Belgium

email: ergashev.tukhtasin@gmail.com

Djuraev N.,

Department of Higher Mathematics, Karshi Engineer-
ing Economics Institute, Karshi, Uzbekistan

email: norqul.djurayev@mail.ru



	1. Introduction
	2. Preliminaries
	3. Construction of p-adic Gibbs measures for the p-adic SOS model
	4. Existence of the p-adic TIQGM
	1. Introduction. Statement of the Problem
	2. The extremal function and the expression for the error functional norm
	3. The system for optimal coefficients of the quadrature formula (1.1)
	1. Introduction
	2. Preliminaries
	3. Uniqueness Criterion
	1. Introduction
	2. Preliminaries
	3. Main result
	1. Introduction
	2.  Formulation of problem and auxiliary constructions
	3.  Preliminaries
	1. Introduction
	2. Study of the direct problem
	3. Study of the inverse problem
	1. Introduction
	2. Multiple hypergeometric functions and their some new properties
	3. Fundamental solutions of a degenerate three-dimensional elliptic equation
	4. Statement of the Dirichlet problem and the uniqueness theorem
	References
























