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Abstract. In this paper, hypergeometric function of Lauricella F
(n)
A has been investigated. The

new properties of which are established and applied to the solution of the Dirichlet problem for the
three-dimensional degenerate elliptic equation. Fundamental solutions of the named equation are
expressed through the Lauricella hypergeometric function in three variables and an explicit solution
of the Dirichlet problem in the first octant is written out through the Appell hypergeometric function
F2. A limit theorem for calculating the value of a function of many variables is proved, and formulas
for their transformation are established. These results are used to determine the order of singularity of
fundamental solutions and to prove the truth of the solution to the Dirichlet problem. The uniqueness
of the solution to the Dirichlet problem is proved by the extremum principle for elliptic equations.
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1. Introduction

It is known, that a special functions are used for solving many problems of mathematical physics (see
[4, 18]). These include the Gauss hypergeometric series, Bessel and Hermite functions, Lauricella hy-
pergeometric functions, etc. The Hermite functions are actively applied in algorithms and information
systems that are used in medical diagnostics [16]. The Bessel functions are used in solving a number of
problems of hydrodynamics, radiophysics, and thermal conductivity [14, Part 2]. Some functions that
are used in astronomy can be arranged in hypergeometric series [20, Chapter 3]. Multidimensional
hypergeometric functions are used in the superstrings theory [5].

The study of boundary value problems for degenerate equations is one of the important directions of
the modern theory of partial differential equations. It is known that in the formulation and construc-
tion of local and nonlocal boundary value problems solutions, the main role is played by fundamental
solutions. Fundamental solutions of the two-dimensional degenerate elliptic equations are expressed
by the Appell function F2, and when the dimension of the equation exceeds two – by the Lauricella

hypergeometric function F
(n)
A with three and more variables.

In this work, the established properties of the Lauricella function are applied to solving the Dirichlet
problem for the three-dimensional degenerate elliptic equation

ymzkuxx + xnzkuyy + xnymuzz = 0,m > 0, n > 0, k > 0 (1.1)

in the domain Ω = {(x, y, z) : x > 0, y > 0, z > 0}.
A degenerate elliptic equation (1.1) is related to an elliptic equation with the singular coefficients

uxx + uyy + uzz +
2α

x
ux +

2β

y
uy +

2γ

z
uz = 0, 0 < 2α, 2β, 2γ < 1. (1.2)

Namely, if in the region of ellipticity the equation (1.1) is reduced to a canonical form, then we obtain
equation (1.2). Using the fundamental solutions constructed in [9], the main boundary value problems
for the equation (1.2) in the finite (first octant of the ball) were solved in explicit forms [10, 11, 22], and
local and nonlocal boundary value problems for the equation (1.2) by the Fourier method in special
infinite domains were investigated [12, 13].

Few works are devoted to the study of boundary value problems for the two-dimensional analogue
of the equation (1.1). In works [1, 19], for the two-dimensional degenerate elliptic equation

ymuxx + xnuyy = 0,m > 0, n > 0
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solutions of the Dirichlet and Neumann problems in the bounded and unbounded domains were found
in explicit forms.

2. Multiple hypergeometric functions and their some new properties

The Gauss hypergeometric function can be represented by the following series [6, p.56, Eq. 2.1(2)]

F (a, b; c;x) =
∞∑
m=0

(a)m (b)m
(c)m

xm

m!
, |x| < 1, (2.1)

where (z)n is a Pochhammer symbol: (z)n = z(z + 1)...(z + n− 1), n = 1, 2, ...; (z)0 = 1.
The great success of the theory of hypergeometric function in one variable has stimulated the

development of corresponding theory in two or more variables. Appell [2] has defined four functions
F1 to F4, which are all analogues to Gauss’ F (a, b; c;x). For instance, the Appell function F2 has a
form

F2

[
a, b1, b2;
c1, c2;

x, y

]
=

∞∑
m,n=0

(a)m+n (b1)m (b2)n
(c1)m (c2)n

xm

m!

yn

n!
, |x|+ |y| < 1, (2.2)

which satisfies the following system of partial differential equations [6, p. 234, Eq. 5.9(10)]:{
x(1− x)uxx − xyuxy + [c1 − (a+ b1 + 1)x]ux−b1yuy − ab1u = 0,

y(1− y)uyy − xyuxy − b2xux+ [c2 − (a+ b2 + 1) y]uy − ab2u = 0.
(2.3)

Lauricella hypergeometric function[15] (see also [21, p. 33])

F
(n)
A

[
a,b;
c;

x

]
=

∞∑
|k|=0

(a)|k|

n∏
i=1

(bi)ki
(ci)ki

xkii
ki!

, |x1|+ ...+ |xn| < 1

is a natural generalization of the classical Gauss hypergeometric function (2.1) and the Appell function
(2.2) to the case of many complex variables and their corresponding complex parameters. Hereinafter

b := (b1, ..., bn) , c := (c1, ..., cn) , x := (x1, ..., xn) ,

k := (k1, ..., kn) , |k| := k1 + ...+ kn, k1 ≥ 0, ..., kn ≥ 0.

Let us list some properties of the Lauricella hypergeometric function F
(n)
A :

1) tranformation formula [3, p. 116, Eq. (9)]:

F
(n)
A

[
a,b;
c;

x

]
= (1−X)

−a
F

(n)
A

[
a, c− b;

c;
x

X − 1

]
, X :=

n∑
j=1

xj; (2.4)

2) differentation formula:

∂

∂xk
F

(n)
A

[
a,b;
c;

x

]
=
abk
ck
F

(n)
A

[
a+ 1,bk + 1;

ck + 1;
x

]
, (2.5)

where the vectors bk + 1 and ck + 1 appear, the k-th component of which is one greater than the
corresponding components of the vectors b and c, respectively:

bk + 1 := (b1, ..., bk−1, bk + 1, bk+1, ..., bn) , ck + 1 := (c1, ..., ck−1, ck + 1, ck+1, ..., cn) , k = 1, n.

The Lauricella hypergeometric function of n variables satisfies the system with n equations
and this system has 2n linearly independent solutions (for details, see [3, pp. 117, 118]). In
our further studies, we use the following system corresponding to a function of three variables

u = F
(3)
A

[
a, b1, b2, b3;
c1, c2, c3;

x, y, z

]
:
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
x(1− x)uxx − xyuxy − xzuxz + [c1 − (a+ b1 + 1)x]ux − b1yuy − b1zuz − ab1u = 0,
y(1− y)uyy − xyuxy − yzuyz − b2xux + [c2 − (a+ b2 + 1)y]uy − b2zuz − ab2u = 0,
z(1− z)uzz − xzuxz − yzuyz − b3xux − b3yuy + [c3 − (a+ b3 + 1)z]uz − ab3u = 0.

(2.6)

The PDE-system (2.6) has 8 linearly independent solutions [3, pp. 117, 118] :

1

{
F

(3)
A

[
a, b1, b2, b3;
c1, c2, c3;

x, y, z

]
, (2.7)

3



x1−c1F
(3)
A

[
a+ 1− c1, b1 + 1− c1, b2, b3;

2− c1, c2, c3;
x, y, z

]
,

y1−c2F
(3)
A

[
a+ 1− c2, b1, b2 + 1− c2, b3;

c1, 2− c2, c3;
x, y, z

]
,

z1−c3F
(3)
A

[
a+ 1− c3, b1, b2, b3 + 1− c3;

c1, c2, 2− c3;
x, y, z

]
,

(2.8)

3



x1−c1y1−c2F
(3)
A

[
a+ 2− c1 − c2, b1 + 1− c1, b2 + 1− c2, b3;

2− c1, 2− c2, c3;
x, y, z

]
,

y1−c2z1−c3F
(3)
A

[
a+ 2− c2 − c3, b1, b2 + 1− c2, b3 + 1− c3;

c1, 2− c2, 2− c3;
x, y, z

]
,

x1−c1z1−c3F
(3)
A

[
a+ 2− c1 − c3, b1 + 1− c1, b2, b3 + 1− c3;

2− c1, c2, 2− c3;
x, y, z

]
,

(2.9)

1

{
x1−c1y1−c2z1−c3F

(3)
A

[
a+ 3− c1 − c2 − c3, b1 + 1− c1, b2 + 1− c2, b3 + 1− c3;

2− c1, 2− c2, 2− c3;
x, y, z

]
. (2.10)

It can also be shown by direct calculations that the functions (2.7) – (2.10) satisfy the system (2.6).

3. Fundamental solutions of a degenerate three-dimensional elliptic equation

Let (x, y, z) and (ξ, η, ζ) be two points of the domain Ω. We are looking for a solution of the
equation (1.1) in the form

u = r−2α−2β−2γ−1ω (ρ, σ, θ) , (3.1)

where ω is a new unknown function,

α =
n

2 (n+ 2)
, β =

m

2 (m+ 2)
, γ =

k

2 (k + 2)
; q =

n+ 2

2
, p =

m+ 2

2
, l =

k + 2

2
;

ρ = −4xqξq

q2r2
, σ = −4ypηp

p2r2
, θ = −4zlζ l

l2r2
, r2 =

1

q2
(xq − ξq)2

+
1

p2
(yp − ηp)2

+
1

l2
(
zl − ζ l

)2
.

It is obvious that

0 < 2α < 1, 0 < 2β < 1, 0 < 2γ < 1; q > 1, p > 1, l > 1.

Substituting (3.1) into equation (1.1), we obtain a system of differential equations of hypergeometric
type

ρ (1− ρ)ωρρ − ρσωρσ − ρθωρθ+
+
[
2α−

(
2α+ β + γ + 3

2

)
ρ
]
ωρ − ασωσ − αθωθ − α

(
α+ β + γ + 1

2

)
ω = 0,

σ (1− σ)ωσσ − ρσωρσ − σθωσθ+
+
[
2β −

(
α+ 2β + γ + 3

2

)
σ
]
ωσ − βρωρ − βθωθ − β

(
α+ β + γ + 1

2

)
ω = 0,

θ (1− θ)ωθθ − ρθωρθ − σθωσθ+
+
[
2γ −

(
α+ β + 2γ + 3

2

)
θ
]
ωθ − γρωρ − γσωσ − γ

(
α+ β + γ + 1

2

)
ω = 0.

(3.2)

Comparing the system (3.2) with the system (2.6) which has 8 particular solutions, we obtain [9]

q0 (x, y, z; ξ, η, ζ) = k0r
−2α−2β−2γ−1F

(3)
A

[
1/2 + α+ β + γ, α, β, γ;

2α, 2β, 2γ;
ρ, σ, θ

]
, (3.3)
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q1 (x, y, z; ξ, η, ζ) = k1xξr
2α−2β−2γ−3F

(3)
A

[
3/2− α+ β + γ, 1− α, β, γ;

2− 2α, 2β, 2γ;
ρ, σ, θ

]
, (3.4)

q11 (x, y, z; ξ, η, ζ) = k11yηr
−2α+2β−2γ−3F

(3)
A

[
3/2 + α− β + γ, α, 1− β, γ;

2α, 2− 2β, 2γ;
ρ, σ, θ

]
, (3.5)

q12 (x, y, z; ξ, η, ζ) = k12zζr
−2α−2β+2γ−3F

(3)
A

[
3/2 + α+ β − γ, α, β, 1− γ;

2α, 2β, 2− 2γ;
ρ, σ, θ

]
, (3.6)

q2 (x, y, z; ξ, η, ζ) = k2xyξηr
2α+2β−2γ−5F

(3)
A

[
5/2− α− β + γ, 1− α, 1− β, γ;

2− 2α, 2− 2β, 2γ;
ρ, σ, θ

]
, (3.7)

q21 (x, y, z; ξ, η, ζ) = k21xzξζr
2α−2β+2γ−5F

(3)
A

[
5/2− α+ β − γ, 1− α, β, 1− γ;

2− 2α, 2β, 2− 2γ;
ρ, σ, θ

]
, (3.8)

q22 (x, y, z; ξ, η, ζ) = k22yzηζr
−2α+2β+2γ−5F

(3)
A

[
5/2 + α− β − γ, α, 1− β, 1− γ;

2α, 2− 2β, 2− 2γ;
ρ, σ, θ

]
, (3.9)

q3 (x, y, z; ξ, η, ζ) = k3xyzξηζr
2α+2β+2γ−7F

(3)
A

[
7/2− α− β − γ, 1− α, 1− β, 1− γ;

2− 2α, 2− 2β, 2− 2γ;
ρ, σ, θ

]
, (3.10)

where k0,..., k3 are constants, which are determined when solving boundary value problems for the
equation (1.1).

It is easy to see that the each of three particular solutions q1, q11 and q12 are symmetrical to each
other with respect to the numerical parameters of the Lauricella function. Hence, in further studies
there is no need to consider the functions q11 and q12, i.e. we omit them and study only the function
q1. Similar propositions can be made about the second trio of particular solutions q2, q21 and q22: we
study only q2, and omit the functions q21 and q22.

It is easy to see that the constructed functions q0, q1, q2 and q3 have the following properties:

∂

∂x
q0

∣∣∣∣
x=0

= 0,
∂

∂y
q0

∣∣∣∣
y=0

= 0,
∂

∂z
q0

∣∣∣∣
z=0

= 0; q1|x=0 = 0,
∂

∂y
q1

∣∣∣∣
y=0

= 0,
∂

∂z
q1

∣∣∣∣
z=0

= 0,

q2|x=0 = 0, q2|y=0 = 0,
∂

∂z
q2

∣∣∣∣
z=0

= 0; q3|x=0 = 0, q3|y=0 = 0, q3|z=0 = 0.

Note, these properties will be used in solving four (Neumann, two Dirichlet-Neumann and Dirichlet)
boundary value problems for the equation (1.1).

Lemma 3.1. If 0 < 2α, 2β, 2γ < 1, then every function qk (k = 0, 3) has a singularity of order
1

r
as

r → 0 .

Proof. To give an example, we consider function q0. The order of singularity of the remaining functions
is determined similarly.

In the case of three variables, the transformation formula (2.4) takes the form

F
(3)
A

[
a, b1, b2, b3;
c1, c2, c3;

x, y, z

]
= (1− x− y − z)−a×

× F (3)
A

[
a, c1 − b1, c2 − b2, c3 − b3;

c1, c2, c3;
x

x+ y + z − 1
,

y

x+ y + z − 1
,

z

x+ y + z − 1

]
. (3.11)

Using the transformation formula (3.11), the function q0 defined in (3.3) can be reduced to the form

q0 (x, y, z; ξ, η, ζ) =
1

r
· q∗0 (x, y, z; ξ, η, ζ) , (3.12)

where

q∗0 (x, y, z; ξ, η, ζ) = k0%
−2α−2β−2γF

(3)
A

[
α+ β + γ + 1/2, α, β, γ;

2α, 2β, 2γ;
4xqξq

q2%2
,
4ypηp

p2%2
,
4zlζ l

l2%2

]
, (3.13)
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%2 =
1

q2
(xq + ξq)

2
+

1

p2
(yp + ηp)

2
+

1

l2
(
zl + ζ l

)2
.

We must show that the value of q∗0 (x, y, z; ξ, η, ζ) as r → 0, i.e. x→ ξ, y → η, z → ζ, is bounded.
According to the theory of Lauricella hypergeometric functions [3, Chap. VII], if the sum of the

absolute values of the variables is less than one, then the function F
(n)
A is bounded for any values of

the numerical parameters. In the case of three variables, this statement looks like∣∣∣∣F (3)
A

[
a, b1, b2, b3;
c1, c2, c3;

x, y, z

]∣∣∣∣ <∞, |x|+ |y|+ |z| < 1. (3.14)

By virtue of (3.14), it is obvious that in (3.13):

4xqξq

q2%2
+

4ypηp

p2%2
+

4zlζ l

l2%2
< 1,

therefore the following inequality is true

|q∗0 (x, y, z; ξ, η, ζ)| ≤ C

R2α+2β+2γ
, r → 0, (3.15)

where C = const > 0 and

R2 =
1

q2
x2q +

1

p2
y2p +

1

l2
z2l. (3.16)

Now from (3.12) and (3.15) follows that the function q0 has a singularity of order
1

r
as r → 0. The

Lemma 3.1 is proved. �

Based on the Lemma 3.1, we conclude that the particular solutions defined in (3.3) – (3.10) are
fundamental solutions of the equation (1.1).

4. Statement of the Dirichlet problem and the uniqueness theorem

Dirichlet problem. Find a solution u (x, y, z) of the equation (1.1) with the regularity C
(
Ω
)⋂

C2 (Ω)
that satisfies the conditions

u (x, y, z)|z=0 = τ1 (x, y) , 0 ≤ x, y <∞, (4.1)

u (x, y, z)|y=0 = τ2 (x, z) , 0 ≤ x, z <∞, (4.2)

u (x, y, z)|x=0 = τ3 (y, z) , 0 ≤ y, z <∞, (4.3)

lim
R→∞

u (x, y, z) = 0, (4.4)

where Ω = {(x, y, z) : x ≥ 0, y ≥ 0, z ≥ 0} ; R is defined in (3.16); τ1 (y, z) , τ2 (x, z) , τ3 (x, y) are given
continuous functions in a closed domain and have representations

τ1 (x, y) =
τ̃1 (x, y)(

1 + 1
q2x2q + 1

p2 y2p
)ε1 , τ̃1(x, y) ∈ C(0 ≤ x, y <∞), (4.5)

τ2 (x, z) =
τ̃2 (x, z)(

1 + 1
q2x2q + 1

l2
z2l
)ε2 , τ̃2(x, z) ∈ C(0 ≤ x, z <∞), (4.6)

τ3 (y, z) =
τ̃3 (y, z)(

1 + 1
p2 y2p + 1

l2
z2l
)ε3 , τ̃3(y, z) ∈ C(0 ≤ y, z <∞), (4.7)

where ε1, ε2, ε3 are a real numbers with α+ β + γ < ε1, ε2, ε3 < 2.
In addition, the functions τ1(x, y), τ2(x, z) and τ3(y, z) satisfy the matching conditions at the origin:

τ1(0, 0) = τ2(0, 0) = τ3(0, 0) and at the lateral edges of the domain Ω:

τ1(x, 0) = τ2(x, 0), τ1(0, y) = τ3(y, 0), τ2(0, z) = τ3(0, z), x, y, z ∈ Ω.
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Theorem 4.1. The Dirichlet problem can have at most one solution.

Proof. To prove Theorem 4.1, it suffices to show that the corresponding homogeneous Dirichlet problem
has a trivial solution. For this purpose, the finite part of the domain Ω, bounded by the planes
x = 0, y = 0, z = 0 and the sphere σ0 :

1

q2
x2q +

1

p2
y2p +

1

l2
z2l = R2, x > 0, y > 0, z > 0,

we denote by ΩR. Let
τ1 (y, z) = τ2 (x, z) = τ3 (x, y) = 0. (4.8)

Then the validity of Theorem 4.1 follows from the extremum principle for elliptic equations [17, p. 12].
Indeed, the function u (x, y, z) in the domain Ω̄R, by virtue of (4.8), can reach its positive maximum
and negative minimum only at σ0.

Let (x, y, z) be an arbitrary point in DR. We take an arbitrary small number ε > 0 and, considering
(4.8), we choose R large enough that |u (x, y, z)| < ε on σ0. For R large enough, this point falls in DR

and therefore |u (x, y, z)| < ε. Since ε is arbitrary, we have u (x, y, z) = 0. Then u (x, y, z) ≡ 0 in D.
The Theorem 4.1 is proved. �

5. Existence of a solution to the Dirichlet problem

Consider a function

u (x, y, z) =

∞∫
0

∞∫
0

tnsmτ1 (t, s)
∂

∂ζ
q3 (x, y, z; t, s, ζ)

∣∣∣∣
ζ=0

dtds+

+

∞∫
0

∞∫
0

tnskτ2 (t, s)
∂q3

∂η

∣∣∣∣
η=0

dtds+

∞∫
0

∞∫
0

tmskτ3 (t, s)
∂q3

∂ξ

∣∣∣∣
ξ=0

dtds, (5.1)

where q3 (x, y, z; ξ, η, ζ) is a fundamental solution defined in (3.10). Applying a differential formula
(2.5), from (5.1) we get the following function:

u (x, y, z) = u1 (x, y, z) + u2 (x, y, z) + u3 (x, y, z) , (5.2)

where

u1 (x, y, z) = k3xyz

∞∫
0

∞∫
0

τ1 (t, s) tn+1sm+1

r2δ
1

F2

[
δ, 1− α, 1− β;
2− 2α, 2− 2β;

− 4xqtq

q2r2
1

,−4ypsp

p2r2
1

]
dtds, (5.3)

u2 (x, y, z) = k3xyz

∞∫
0

∞∫
0

τ2 (t, s; ) tn+1sk+1

r2δ
2

F2

[
δ, 1− α, 1− γ;
2− 2α, 2− 2γ;

− 4xqtq

q2r2
2

,−4zlsl

l2r2
2

]
dtds, (5.4)

u3 (x, y, z) = k3xyz

∞∫
0

∞∫
0

τ3 (t, s; ) tm+1sk+1

r2δ
3

F2

[
δ, 1− β, 1− γ;
2− 2β, 2− 2γ;

− 4yptp

p2r2
3

,−4zlsl

l2r2
3

]
dtds, (5.5)

k3 =
1

2π
q−2+2αp−2+2βl−2+2γ Γ (1− α) Γ (1− β) Γ (1− γ) Γ (6− 2α− 2β − 2γ)

Γ (2− 2α) Γ (2− 2β) Γ (2− 2γ) Γ (3− α− β − γ)
, (5.6)

δ =
7

2
− α− β − γ; r2

1 =
1

q2
(xq − tq)2

+
1

p2
(yp − sp)2

+
1

l2
z2l,

r2
2 =

1

q2
(xq − tq)2

+
1

p2
y2p +

1

l2
(
zl − sl

)2
, r2

3 =
1

q2
x2q +

1

p2
(yp − tp)2

+
1

l2
(
zl − sl

)2
.

Here F2 is Appell hypergeometric function defined in (2.2).
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Lemma 5.1. If the function τ1(x, y) can be represented as (4.5), then the function u1 (x, y, z) defined
by equality (5.3) is a regular solution of equation (1.1) in the domain Ω satisfying the conditions (4.4)
and

u1(x, y, 0) = τ1(x, y), u1(x, 0, z) = 0, u1(0, y, z) = 0. (5.7)

Proof. First let us prove that the function (5.3) satisfies the degenerate elliptic equation (1.1). For
this purpose, we consider the auxiliary function

W (x, y, z; t, s) = xyzr−2δ
1 ω(ϑ, ς), (5.8)

where

ω(ϑ, ς) := F2

[
δ, 1− α, 1− β;
2− 2α, 2− 2β;

ϑ, ς

]
, ϑ = −4xt

r2
1

, ς = −4ys

r2
1

.

We calculate the necessary derivatives of the auxiliary function W with respect to the variables
x, y, z and substitute them into the degenerate elliptic equation (1.1). As a result, we obtain the
relation

ymzkWxx + xnzkWyy + xnymWzz =

= ϑyzr−2µ
1 {ϑ(1− ϑ)ωϑϑ − ϑςωϑς + [2(1− α)− (2− α+ δ)ϑ]ωϑ − (1− α)δω}

+xςzr−2µ
1 {ς(1− ς)ωςς − ϑςωϑς + [2(1− β)− (2− β + δ)ς]ως − (1− β)δω} = 0,

which is equivalent to the following system of hypergeometric equations{
ϑ(1− ϑ)ωϑϑ − ϑςωϑς + [2(1− α)− (2− α+ δ)ϑ]ωϑ − (1− α)δω = 0,

ς(1− ς)ωςς − ϑςωϑς + [2(1− β)− (2− β + δ)ς]ως − (1− β)δω = 0.

Comparing the last system of equations with the system of equations (2.3) for the Appell function F2,
we can conclude that the function (5.8) is a solution of the corresponding degenerate elliptic equation.
Consequently, the function u1(x, y, z) defined by (5.3) satisfies the degenerate elliptic equation (1.1).

Now we prove that the function u1(x, y, z) satisfies the boundary conditions (5.7). Indeed, intro-
ducing in the integrand in (5.3) instead of t and s new variables

µ =
l (tq − xq)

qzl
, ν =

l (sp − yp)
pzl

,

we obtain

u1 (x, y, z) = l2δ−2k3xyz
2l(α+β−2)

∞∫
−
lxq

qzl

∞∫
−
lyp

pzl

(
xq + µqzl/l

)(
yp + νqzl/l

)
(1 + µ2 + ν2)

δ
×

×F2

[
δ, 1− α, 1− β;
2− 2α, 2− 2β;

−
4l2xq

(
xq + µqzl/l

)
q2z2l (1 + µ2 + ν2)

,−
4l2yp

(
yp + νpzl/l

)
p2z2l (1 + µ2 + ν2)

]
×

×τ1

[(
xq + µqzl/l

)1/q
,
(
yp + νpzl/l

)1/p]
dµdν.

Taking the expression (5.6) into account for the coefficient k3, considering the well-known formula
for calculating the double improper integral [8, p. 633, Eq. 4.623]

∞∫
0

∞∫
0

ϕ
(
a2x2 + b2y2

)
dxdy =

π

4ab

∞∫
0

ϕ(x)dx

and Legendre’s duplication formula [6, p. 5, Eq. 1.2(15)],

Γ(2z) =
22z−1

√
π

Γ(z)Γ

(
z +

1

2

)
,
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we obtain
lim
z→0

u1 (x, y, z) = τ1 (x, y) . (5.9)

Using the similar transformations, we have

lim
x→0

u1 (x, y, z) = 0, lim
y→0

u1 (x, y, z) = 0. (5.10)

Therefore, based on equalities (5.9) and (5.10) we conclude that the function u1(x, y, z), defined by
(5.3), satisfies conditions (5.7).

Let us show that if given function τ1 has representation (4.5), then the function u1(x, y, z) defined
in (5.3) tends to zero at infinity.

Using the transformation formula for Appell function F2 [6, p. 240, Eq. 5.11(8)]

F2

[
a, b1, b2;
c1, c2;

x, y

]
= (1− x− y)−aF2

[
a, c1 − b1, c2 − b2;

c1, c2;
x

x+ y − 1
,

y

x+ y − 1

]
,

we write the function (5.3) in the form

u1 (x, y, z) = k3xyz

∞∫
0

∞∫
0

τ1 (t, s) tn+1sm+1

ρ2δ
F2

[
δ, 1− α, 1− β;
2− 2α, 2− 2β;

4xqtq

q2ρ2
,
4ypsp

p2ρ2

]
dtds, (5.11)

where

ρ2 =
1

q2
(xq + tq)

2
+

1

p2
(yp + sp)

2
+

1

l2
z2l.

It is easy to see that in (5.11) the following inequality holds

4xqtq

q2ρ2
+

4ypsp

p2ρ2
< 1, x > 0, y > 0, z > 0, t > 0, s > 0.

Let us prove that when the point (x, y, z) tends to infinity, i.e. when R → ∞, the function (5.11)
tends to zero. It known from the theory of Appell functions [2], that, if |x| + |y| < 1, then for any
values of the numerical parameters the Appell hypergeometric function F2 is bounded:

| F2 (a, b1, b2; c1, c2;x, y) |≤ C1, |x|+ |y| < 1.

Next, applying the representation (4.5) for given function τ1(x, y), we obtain

|u1| ≤ C2xyz

∞∫
0

∞∫
0

tn+1sm+1dtds(
1 + 1

q2 t2q + 1
p2 s2p

)ε1 [
1
q2 (xq + tq)

2
+ 1

p2 (yp + sp)
2

+ 1
l2
z2l
]7/2−α−β−γ . (5.12)

Substituting t and s for

µ =
1

qR
tq, ν =

1

pR
sp

in the last double improper integral (5.12), we get

|u1| ≤
qpC3

R2ε1−2α−2β−2γ
· x
R
· y
R
· z
R
·K (x, y;R) , (5.13)

where ε1 > α+ β + γ (see condition in (4.5) ) and

K (x, y;R) =

∞∫
0

∞∫
0

µνdµdν(
µ2 + ν2 + 1

R2

)ε1 (
1 + µ2 + ν2 + 2xq

qR
+ 2yp

pR

)7/2−α−β−γ . (5.14)

It is easy to show that the double improper integral on the right-hand side (5.14) is bounded as
R→∞. Indeed, using the formula [7]
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+∞∫
0

...

+∞∫
0︸ ︷︷ ︸

n

xp1−1
1 ...xpn−1

n dx1...dxn

[(r1x1)
q1 + ...+ (rnxn)

qn ]
t
[1 + (r1x1)

q1 + ...+ (rnxn)
qn ]

s =

=
Γ (p1/q1) ...Γ (pn/qn) Γ (P − t) Γ (s+ t− P )

q1q2...qnr
p1q1
1 ...rpnqnn Γ (P ) Γ (s)

, P :=
p1

q1

+ ...+
pn
qn
,

where pk, qk, rk and s are positive numbers (k = 1, n), 0 < P − t < s , and passing in (5.14) to the
limit as R→∞, we obtain

lim
R→∞

K (x, y;R) =
Γ (2− ε1) Γ (3/2− α− β − γ + ε1)

4Γ (7/2− α− β − γ)
, α+ β + γ < ε1 < 2. (5.15)

Thus, by virtue of (5.13) and (5.15) the following estimate is valid:

|u1| ≤
C4

R2(ε1−α−β−γ)
, α+ β + γ < ε1 < 2, R→∞. (5.16)

Considering (5.16), we conclude that the function (5.3) vanishes at infinity. Lemma 5.1 is proved. �

Remark 5.2. Repeating the arguments given in Lemma 5.1, one can prove two lemmas concerning
the functions u2(x, y, z) and u3(x, y, z) defined by equalities (5.4) and (5.5), respectively. Thus, if the
representations (4.6) and (4.7) are valid for the given functions τ2(x, z) and τ3(y, z), then each of the
functions u2(x, y, z) and u3(x, y, z) is a solution to the degenerate elliptic equation (1.1) that vanishes
at infinity and satisfies the set of conditions

u2(x, y, 0) = 0, u2(x, 0, z) = τ2(x, z), u2(0, y, z) = 0,

u3(x, y, 0) = 0, u3(x, 0, z) = 0, u3(0, y, z) = τ3(y, z),

respectively.

Theorem 5.3. If given functions τ1(x, y), τ2(x, z) and τ3(y, z) have the representations (4.5), (4.6)
and (4.7), respectively, then the function u(x, y, z) defined in (5.2) is a regular solution of the equation
(1.1) in the domain Ω satisfying the conditions (4.1) – (4.4).

Proof of Theorem 5.3 follows from Lemma 5.1 and Remark 5.2.
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