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Аннотация
В ходе серии исследований, охватывающей период с 1889 по 1939 год,

были систематически изучены все двойные гипергеометрические ряды
второго порядка. Значительный вклад в развитие теории гипергеомет-
рических функций двух переменных внес Горн, предложивший их клас-
сификацию на полные и конфлюэнтные функции. Составленный Гор-
ном список включает четырнадцать полных и двадцать конфлюэнтных
функций двух переменных, причем последние являются предельными
случаями полных функций. В 1985 году Сривастава и Карлссон завер-
шили построение полного набора гипергеометрических функций второ-
го порядка трех переменных, однако аналогичная классификация для
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их конфлюэнтных аналогов до сих пор остается незавершенной. Таким
образом, теория конфлюэнтных гипергеометрических функций трех пе-
ременных в настоящее время находится в стадии формирования, а изу-
чение функций четырех переменных представляет собой перспективное
направление исследований.

В настоящей работе исследуются некоторые конфлюэнтные гипер-
геометрические функции от трех и четырех переменных. Устанавлива-
ются их новые свойства, которые применяются для решения задачи Ди-
рихле для трехмерного уравнения Гельмгольца с тремя сингулярными
коэффициентами.

Фундаментальные решения указанного уравнения выражаются че-
рез конфлюэнтную гипергеометрическую функцию четырех перемен-
ных, а явное решение задачи Дирихле в первом октанте строится с по-
мощью функции трех переменных, являющейся следом конфлюэнтной
функции четырех переменных. Доказывается теорема о вычислении зна-
чений функций многих переменных и устанавливаются формулы их
преобразования. Полученные результаты используются для определе-
ния порядка сингулярности фундаментальных решений и обоснования
корректности решения задачи Дирихле.

Единственность решения задачи Дирихле доказывается на основе
принципа экстремума для эллиптических уравнений.

Ключевые слова: конфлюэнтные функции многих переменных, систе-
мы дифференциальных уравнений в частных производных гипергеомет-
рического типа, сингулярное уравнение Гельмгольца, фундаментальное
решение, задача Дирихле.
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Принятие: 5 мая 2025 г. / Публикация онлайн: 22 августа 2025 г.

1. Введение. Начиная с работы И. Н. Векуа [1, гл. 1] исследуются крае-
вые задачи для уравнения Гельмгольца

𝑢𝑥𝑥 + 𝑢𝑦𝑦 + 𝜆2𝑢 = 0,

где 𝜆— вообще говоря, комплексная постоянная. Это уравнение встречается
во многих разделах математической физики (теория упругости, теория элек-
тромагнитных волн и др.); его иногда называют метагармоническим уравне-
нием, а его решения — метагармоническими функциями; постоянную 𝜆 назы-
вают параметром метагармонической функции [2].

Ввиду наличия многочисленных приложений в современной теории диф-
ференциальных уравнений в частных производных значительное место за-
нимают исследования вырождающихся уравнений, особый класс которых со-
ставляют уравнения с сингулярными коэффициентами.

Впервые в 1952 году М. Б. Капилевичем [3] была решена задача Дирихле
для многомерного уравнения Гельмгольца с одним сингулярным коэффици-
ентом

𝑛∑︁
𝑗=1

𝜕2𝑢

𝜕𝑥2𝑗
+

2𝛼

𝑥𝑛

𝜕𝑢

𝜕𝑥𝑛
− 𝑏2𝑢 = 0, 0 < 2𝛼 < 1,

в полупространстве 𝑥𝑛 > 0.
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Краевые задачи для обобщенного двуосесимметрического уравнения Гельм-
гольца

𝑢𝑥𝑥 + 𝑢𝑦𝑦 +
2𝛼

𝑥
𝑢𝑥 +

2𝛽

𝑦
𝑢𝑦 + 𝜆2𝑢 = 0, 0 < 2𝛼, 2𝛽 < 1, (1)

были предметом интереса многих математиков.
Уравнение (1) связано с уравнением смешанного типа

𝜂𝑚𝑢𝜉𝜉 + 𝜉𝑛𝑢𝜂𝜂 + 𝜆2𝑢 = 0, (2)

а именно, если в области эллиптичности привести уравнение (2) к канони-
ческой форме, то получится уравнение (1). При 𝑛 = 𝜆 = 0 уравнение (2)
называется уравнением Геллерстедта, а в случае 𝑛 = 𝜆 = 0, 𝑚 = 1— уравне-
нием Трикоми и имеет важное прикладное значение в газовой динамике [4].

Теория краевых задач для различных частных случаев уравнения (1) ак-
тивно разрабатывалась во второй половине XX века. С. П. Пулькиным [5]
исследованы краевые задачи типа Е для уравнения (1) при 𝛽 = 𝜆 = 0. Кра-
евыми задачами для частных случаев уравнения (1), а также уравнения (2),
занимались Д. Аманов [6], М. Е. Лернер и О. А. Репин [7], Е. И. Моисеев [8],
Н. Б. Плещинский и Д. Н. Тумаков [9], Н. Р. Раджабов [10], М. С. Салахит-
динов и А. Хасанов [11].

В 1969 году R. P. Gilbert [12] построил интегральное представление ре-
шений уравнения (1) через аналитические функции. Выведенная там фор-
мула обращения этого представления содержит весьма громоздкие ряды и
неудобна в приложениях, в частности при решении вопросов о сведении кра-
евых задач для уравнения (1) к хорошо изученным краевым задачам теории
аналитических функций [13]. В работе А. Хасанова [14] фундаментальные
решения уравнения (1) построены в явных формах.

В монографии [15] получены различные интегральные представления ре-
шений и некоторые частные формулы их обращений для обобщенного дву-
осесимметрического уравнения Гельмгольца (1) и соответствующего ему ги-
перболического уравнения

𝑢𝑥𝑥 − 𝑢𝑦𝑦 +
2𝛼

𝑥
𝑢𝑥 −

2𝛽

𝑦
𝑢𝑦 + 𝜆2𝑢 = 0, 0 < 2𝛼, 2𝛽 < 1,

получаемого из (1) заменой 𝑦 на −𝑖𝑦.
Для уравнения (1) при 𝜆 = 𝜇𝑖 в работе О. А. Репина и М. Е. Лернера [16]

доказана однозначная разрешимость и найдена формула решения задачи Ди-
рихле в первом квадранте. А. А. Абашкиным [17] поставлены и исследова-
ны новые краевые задачи для двуосесимметрического уравнения Гельмголь-
ца (1) в прямоугольнике, полуполосе и полосе. Отличительной особенностью
исследованных краевых задач [17] является то, что на параметры 𝛼, 𝛽 и 𝜆
уравнения (1) накладываются минимальные ограничения.

В настоящей работе исследуется задача Дирихле для трехмерного урав-
нения Гельмгольца с тремя сингулярными коэффициентами

𝑢𝑥𝑥 + 𝑢𝑦𝑦 + 𝑢𝑧𝑧 +
2𝛼

𝑥
𝑢𝑥 +

2𝛽

𝑦
𝑢𝑦 +

2𝛾

𝑧
𝑢𝑧 − 𝜆2𝑢 = 0 (3)
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в первом октанте, где 𝛼, 𝛽, 𝛾 и 𝜆— действительные числа, причем 0 < 2𝛼, 2𝛽,
2𝛾 < 1. Единственность решения поставленной задачи доказывается с помо-
щью принципа экстремума для эллиптических уравнений. С использованием
известного решения уравнения (3), построенного в [18], решение рассматрива-
емой задачи строится в явной форме. При доказательстве теоремы существо-
вания применяются свойства конфлюэнтной гипергеометрической функции
от трех переменных 𝐴2, впервые введенной и исследованной в [14].

Исследованию краевых задач для уравнения (3) посвящено сравнительно
малое количество работ. Отметим работы А. Хасанова [19] и Э. Т. Каримова
[20], в которых решения основных краевых задач для уравнения (3) при 𝜆 = 0
в бесконечной (первом октанте) и конечной (первом октанте шара) областях
соответственно найдены в явных формах. В работе [21] для уравнения (3) при
𝛽 = 𝛾 = 𝜆 = 0 построена теория потенциала и решена задача Хольмгрена
с помощью метода потенциала.

2. Конфлюэнтные гипергеометрические функции многих пере-
менных. Известно [22, 23], что решение самых разных задач, относящихся
к теплопроводности и динамике, электромагнитным колебаниям и аэродина-
мике, квантовой механике и теории потенциала, приводит к специальным
функциям. Чаще всего они появляются при решении дифференциальных
уравнений в частных производных методом разделения переменных. Разно-
образие задач, приводящих к специальным функциям, вызвало быстрый рост
числа функций, применяемых в приложениях.

Символ Похгаммера (𝑧)𝑛 при целых 𝑛 определяется равенством

(𝑧)𝑛 = 𝑧(𝑧 + 1) · · · (𝑧 + 𝑛− 1), 𝑛 = 1, 2, . . . ; (𝑧)0 = 1.

Справедливы равенства (𝑧)𝑛 = (−1)𝑛(1− 𝑛− 𝑧)𝑛, (1)𝑛 = 𝑛! и

(𝑧)𝑛 =
Γ(𝑧 + 𝑛)

Γ(𝑧)
. (4)

Равенство (4) можно использовать для введения символа (𝑧)𝑛 при дей-
ствительных (комплексных) 𝑛.

Большие успехи в изучении теории гипергеометрической функции Гаусса

𝐹 (𝑎, 𝑏; 𝑐;𝑥) =

∞∑︁
𝑚=0

(𝑎)𝑚(𝑏)𝑚
(𝑐)𝑚

𝑥𝑚

𝑚!
, |𝑥| < 1 (5)

стимулировали развитие соответствующих теорий для функций от двух или
многих переменных.

Аппель [24] определил в 1880 г. гипергеометрическую функцию

𝐹2(𝑎, 𝑏1, 𝑏2; 𝑐1, 𝑐2;𝑥, 𝑦) =
∞∑︁

𝑚,𝑛=0

(𝑎)𝑚+𝑛(𝑏1)𝑚(𝑏2)𝑛
(𝑐1)𝑚(𝑐2)𝑛

𝑥𝑚

𝑚!

𝑦𝑛

𝑛!
, |𝑥|+ |𝑦| < 1, (6)

которая аналогична функции Гаусса.
Гипергеометрическая функция Лауричелла [25]

𝐹
(𝑛)
𝐴

[︂
𝑎,b;
c;

x

]︂
=

∞∑︁
|k|=0

(𝑎)|k|

𝑛∏︁
𝑖=1

(𝑏𝑖)𝑘𝑖
(𝑐𝑖)𝑘𝑖

𝑥𝑘𝑖𝑖
𝑘𝑖!

, |𝑥1|+ · · ·+ |𝑥𝑛| < 1, (7)
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является естественным обобщением классической гипергеометрической функ-
ции Гаусса (5) и функции Аппеля (6) на случай многих комплексных пере-
менных и соответствующих им комплексных параметров. Здесь и далее

b := (𝑏1, . . . , 𝑏𝑛), c := (𝑐1, . . . , 𝑐𝑛), x := (𝑥1, . . . , 𝑥𝑛),

k := (𝑘1, . . . , 𝑘𝑛), |k| := 𝑘1 + · · ·+ 𝑘𝑛, 𝑘1 > 0, . . . , 𝑘𝑛 > 0.

В приложениях функций Лауричелла 𝐹 (𝑛)
𝐴 важна следующая

Теорема 1 [26]. Пусть 𝑎, 𝑏𝑘, 𝑐𝑘 — действительные числа, 𝑎 > |b| > 0 и
𝑐𝑘 > 𝑏𝑘. Тогда для 𝑛 = 1, 2, . . . справедливо следующее предельное соотноше-
ние:

lim
𝜀→0

{︂
𝜀−|b|𝐹

(𝑛)
𝐴

[︂
𝑎,b;
c;

1− 𝑓1(𝜀)

𝜀
, . . . , 1− 𝑓𝑛(𝜀)

𝜀

]︂}︂
=

=
Γ(𝑎− |b|)

Γ(𝑎)

𝑛∏︁
𝑘=1

|𝑓𝑘(0)|−𝑏𝑘Γ(𝑐𝑘)

Γ(𝑐𝑘 − 𝑏𝑘)
,

где |b| := 𝑏1 + · · ·+ 𝑏𝑛; 𝑓𝑘(𝜀)— произвольные функции, причем 𝑓𝑘(0) ̸= 0.
Отметим, что явные решения основных краевых задач для многомерных

сингулярных эллиптических уравнений выражаются через гипергеометри-
ческую функцию Лауричелла 𝐹

(𝑛)
𝐴 , число переменных которой равно чис-

лу сингулярных коэффициентов рассматриваемого эллиптического уравне-
ния [27,28].

Рассмотрим следующую конфлюэнтную гипергеометрическую функцию
от 𝑛+ 1 переменных [29]:

H
(𝑛,1)
𝐴

[︂
𝑎,b;
c;

x; 𝑦

]︂
=

∞∑︁
|k|+𝑙=0

(𝑎)|k|−𝑙

𝑛∏︁
𝑗=1

(𝑏𝑗)𝑘𝑗
(𝑐𝑗)𝑘𝑗

𝑥
𝑘𝑗
𝑗

𝑘𝑗 !
· 𝑦

𝑙

𝑙!
,

𝑛∑︁
𝑗=1

|𝑥𝑗 | < 1. (8)

Для функции H
(𝑛,1)
𝐴 справедлива формула преобразования

H
(𝑛,1)
𝐴

[︂
𝑎,b;
c;

x; 𝑦

]︂
= 𝑍−𝑎H

(𝑛,1)
𝐴

[︂
𝑎, c− b;

c;
− x

𝑍
;𝑍𝑦

]︂
, (9)

где
𝑍 := 1− 𝑥1 − · · · − 𝑥𝑛.

В приложениях конфлюэнтной гипергеометрической функции H
(𝑛,1)
𝐴 к ре-

шению краевых задач используется следующая
Теорема 2. Пусть 𝑎, 𝑏𝑘, 𝑐𝑘 — действительные числа, 𝑎 > |b| > 0 и

𝑐𝑘 > 𝑏𝑘. Тогда для 𝑛 = 1, 2, . . . справедливо следующее предельное соотно-
шение:

lim
𝜀→0

{︂
𝜀−|b|H

(𝑛,1)
𝐴

[︂
𝑎,b;
c;

1− 𝑓1(𝜀)

𝜀
, . . . , 1− 𝑓𝑛(𝜀)

𝜀
, 𝜀𝑦

]︂}︂
=
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=
Γ (𝑎− |b|)

Γ(𝑎)

𝑛∏︁
𝑘=1

|𝑓𝑘(0)|−𝑏𝑘Γ(𝑐𝑘)

Γ(𝑐𝑘 − 𝑏𝑘)
, (10)

где |b| := 𝑏1 + · · ·+ 𝑏𝑛; 𝑓𝑘(𝜀)— произвольные функции, причем 𝑓𝑘(0) ̸= 0; 𝑦—
действительная переменная.

До к а з ат е л ь ств о. Из определения (8) конфлюэнтной гипергеометри-
ческой функции H

(𝑛,1)
𝐴 следует

H
(𝑛,1)
𝐴

[︂
𝑎,b;
c;

x; 𝑦

]︂
=

∞∑︁
𝑘=0

(−1)𝑘

(1− 𝑎)𝑘

𝑦𝑘

𝑘!
𝐹

(𝑛)
𝐴

[︂
𝑎− 𝑘,b;

c;
x

]︂
, (11)

где 𝐹
(𝑛)
𝐴 — гипергеометрическая функция Лауричелла, определенная в (7).

Положив в (11) 𝑦 = 0, придем к равенству

H
(𝑛,1)
𝐴

[︂
𝑎,b;
c;

x; 0

]︂
= 𝐹

(𝑛)
𝐴

[︂
𝑎,b;
c;

x

]︂
. (12)

Далее доказательство теоремы 2 непосредственно следует из теоремы 1
и формулы (12). �

Частные случаи конфлюэнтной гипергеометрической функции H
(𝑛,1)
𝐴 бы-

ли известны: в случае 𝑛 = 1— конфлюэнтная функция Горна H3, определяе-
мая равенством

H3(𝑎, 𝑏; 𝑐;𝑥, 𝑦) =
∞∑︁

𝑚,𝑛=0

(𝑎)𝑚−𝑛(𝑏)𝑚
(𝑐)𝑚

𝑥𝑚

𝑚!

𝑦𝑛

𝑛!
, |𝑥| < 1; (13)

в случае 𝑛 = 2— конфлюэнтная функция, введенная в [14]:

A2

[︂
𝑎, 𝑏1, 𝑏2;
𝑐1, 𝑐2;

𝑥, 𝑦, 𝑧

]︂
=

∞∑︁
𝑚,𝑛,𝑘=0

(𝑎)𝑚+𝑛−𝑘(𝑏1)𝑚(𝑏2)𝑛
(𝑐1)𝑚(𝑐2)𝑛

𝑥𝑚

𝑚!

𝑦𝑛

𝑛!

𝑧𝑘

𝑘!
, |𝑥|+ |𝑦| < 1;

в случае 𝑛 = 3 конфлюэнтная гипергеометрическая функция H
(3,1)
𝐴 была

определена впервые в [18] через функцию Лауричелла 𝐹 (3)
𝐴 :

H
(3,1)
𝐴

[︂
𝑎, 𝑏1, 𝑏2, 𝑏3;
𝑐1, 𝑐2, 𝑐3;

𝑥, 𝑦, 𝑧, 𝑡

]︂
=

=
∞∑︁
𝑘=0

(−1)𝑘

(1− 𝑎)𝑘

𝑡𝑘

𝑘!
𝐹

(3)
𝐴

[︂
𝑎− 𝑘, 𝑏1, 𝑏2, 𝑏3;

𝑐1, 𝑐2, 𝑐3;
𝑥, 𝑦, 𝑧

]︂
, |𝑥|+ |𝑦|+ |𝑧| < 1.

В приложениях любой гипергеометрической функции важна система диф-
ференциальных уравнений в частных производных, которой удовлетворя-
ет данная гипергеометрическая функция. Такая система для конфлюэнтной
функции двух переменных H3 была известна. Однако Волкодавов и Быстро-
ва [30] впервые обратили внимание на то, что в известной справочной литера-
туре по специальным функциям [31, гл. 5, фор. 5.9(34)] приведена ошибочно
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система дифференциальных уравнений, которой якобы удовлетворяет функ-
ция (13), и ими получена истинная система дифференциальных уравнений,
которой удовлетворяет конфлюэнтная функция H3(𝑎, 𝑏; 𝑐;𝑥, 𝑦).

Конфлюэнтная функция 𝑢 = A2

[︂
𝑎, 𝑏1, 𝑏2;
𝑐1, 𝑐2;

𝑥, 𝑦, 𝑧

]︂
удовлетворяет следую-

щей системе дифференциальных уравнений в частных производных [14]:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝑥(1− 𝑥)𝑢𝑥𝑥 − 𝑥𝑦𝑢𝑥𝑦 + 𝑥𝑧𝑢𝑥𝑧 +

+ [𝑐1 − (𝑎+ 𝑏1 + 1)𝑥]𝑢𝑥 − 𝑏1𝑦𝑢𝑦 + 𝑏1𝑧𝑢𝑧 − 𝑎𝑏1𝑢 = 0,

𝑦(1− 𝑦)𝑢𝑦𝑦 − 𝑥𝑦𝑢𝑥𝑦 + 𝑦𝑧𝑢𝑦𝑧 −
− 𝑏2𝑥𝑢𝑥 + [𝑐2 − (𝑎+ 𝑏2 + 1)𝑦]𝑢𝑦 + 𝑏2𝑧𝑢𝑧 − 𝑎𝑏2𝑢 = 0,

𝑧𝑢𝑧𝑧 − 𝑥𝑢𝑥𝑧 − 𝑦𝑢𝑦𝑧 + (1− 𝑎)𝑢𝑧 + 𝑢 = 0.

(14)

Вообще говоря, конфлюэнтная функция H
(𝑛,1)
𝐴

[︂
𝑎,b;
c;

x; 𝑦

]︂
удовлетворяет

системе из 𝑛+1 уравнений гипергеометрического типа, которая в окрестности
начала координат имеет 2𝑛 линейно независимых решений (за подробностями
см. [29]).

3. Фундаментальные решения обобщенного трехмерного уравне-
ния Гельмгольца с тремя сингулярными коэффициентами. Первую
октанту трехмерного евклидова пространства R3 обозначим через

Ω = {(𝑥, 𝑦, 𝑧) : 𝑥 > 0, 𝑦 > 0, 𝑧 > 0}.

Пусть (𝑥, 𝑦, 𝑧) и (𝜉, 𝜂, 𝜁)— две точки области Ω. Обозначим

𝑟 =
√︀

(𝑥− 𝜉)2 + (𝑦 − 𝜂)2 + (𝑧 − 𝜁)2.

В области Ω рассмотрим обобщенное трехмерное уравнение Гельмгольца
с тремя сингулярными коэффициентами

𝐿𝑢 ≡ Δ𝑢+
2𝛼

𝑥
𝑢𝑥 +

2𝛽

𝑦
𝑢𝑦 +

2𝛾

𝑧
𝑢𝑧 − 𝜆2𝑢 = 0, (15)

где 𝛼, 𝛽, 𝛾 и 𝜆— действительные числа, причем 0 < 2𝛼, 2𝛽, 2𝛾 < 1.
Уравнение вида

𝐿*𝑢 ≡ Δ𝑢− 𝜕

𝜕𝑥

(︂
2𝛼𝑢

𝑥

)︂
− 𝜕

𝜕𝑦

(︂
2𝛽𝑢

𝑦

)︂
− 𝜕

𝜕𝑧

(︂
2𝛾𝑢

𝑧

)︂
− 𝜆2𝑢 = 0 (16)

называется сопряженным уравнением к уравнению 𝐿𝑢 = 0.
Определение 1. Функция 𝑞(𝑥, 𝑦, 𝑧; 𝜉, 𝜂, 𝜁) называется фундаментальным

решением уравнения (15) с особенностью в точке (𝜉, 𝜂, 𝜁) ∈ Ω, если она
1) является решением уравнения (15) по переменным 𝜉, 𝜂, 𝜁 во всех точках

Ω, за исключением точки (𝑥, 𝑦, 𝑧);
2) является решением сопряженного уравнения (16) по переменным 𝑥, 𝑦, 𝑧

во всех точках Ω, за исключением точки (𝜉, 𝜂, 𝜁);
3) при (𝑥, 𝑦, 𝑧) → (𝜉, 𝜂, 𝜁) имеет особенность порядка 1/𝑟.
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Как известно [18], уравнение (15) имеет 8 линейно независимых решений:

𝑢0 = 𝑘0𝑟
−2𝑎H

(3,1)
𝐴

[︂
𝑎, 𝛼, 𝛽, 𝛾;
2𝛼, 2𝛽, 2𝛾;

𝑋

]︂
,

𝑢11 = 𝑘11(𝑥𝜉)
1−2𝛼𝑟4𝛼−2𝑎−2H

(3,1)
𝐴

[︂
𝑎+ 1− 2𝛼, 1− 𝛼, 𝛽, 𝛾;

2− 2𝛼, 2𝛽, 2𝛾;
𝑋

]︂
,

𝑢12 = 𝑘12(𝑦𝜂)
1−2𝛽𝑟4𝛽−2𝑎−2H

(3,1)
𝐴

[︂
𝑎+ 1− 2𝛽, 𝛼, 1− 𝛽, 𝛾;

2𝛼, 2− 2𝛽, 2𝛾;
𝑋

]︂
,

𝑢13 = 𝑘13(𝑧𝜁)
1−2𝛾𝑟4𝛾−2𝑎−2H

(3,1)
𝐴

[︂
𝑎+ 1− 2𝛾, 𝛼, 𝛽, 1− 𝛾;

2𝛼, 2𝛽, 2− 2𝛾;
𝑋

]︂
,

𝑢21 = 𝑘21(𝑥𝜉)
1−2𝛼(𝑦𝜂)1−2𝛽𝑟4𝛼+4𝛽−2𝑎−4×

×H
(3,1)
𝐴

[︂
𝑎+ 2− 2𝛼− 2𝛽, 1− 𝛼, 1− 𝛽, 𝛾;

2− 2𝛼, 2− 2𝛽, 2𝛾;
𝑋

]︂
,

𝑢22 = 𝑘22(𝑥𝜉)
1−2𝛼(𝑧𝜁)1−2𝛾𝑟4𝛼+4𝛾−2𝑎−4×

×H
(3,1)
𝐴

[︂
𝑎+ 2− 2𝛼− 2𝛾, 1− 𝛼, 𝛽, 1− 𝛾;

2− 2𝛼, 2𝛽, 2− 2𝛾;
𝑋

]︂
,

𝑢23 = 𝑘23(𝑦𝜂)
1−2𝛽(𝑧𝜁)1−2𝛾𝑟4𝛽+4𝛾−2𝑎−4×

×H
(3,1)
𝐴

[︂
𝑎+ 2− 2𝛽 − 2𝛾, 𝛼, 1− 𝛽, 1− 𝛾;

2𝛼, 2− 2𝛽, 2− 2𝛾;
𝑋

]︂
,

𝑢3 = 𝑘3(𝑥𝜉)
1−2𝛼(𝑦𝜂)1−2𝛽(𝑧𝜁)1−2𝛾𝑟4𝛼+4𝛽+4𝛾−2𝑎−6×

×H
(3,1)
𝐴

[︂
𝑎+ 3− 2𝛼− 2𝛽 − 2𝛾, 1− 𝛼, 1− 𝛽, 1− 𝛾;

2− 2𝛼, 2− 2𝛽, 2− 2𝛾;
𝑋

]︂
,

где 𝑎 := 𝛼+ 𝛽 + 𝛾 + 1/2; 𝑘0, . . . , 𝑘3 — известные постоянные. Здесь для крат-
кости совокупность переменных обозначена через 𝑋:

𝑋 :=
(︁
−4𝑥𝜉

𝑟2
,−4𝑦𝜂

𝑟2
,−4𝑧𝜁

𝑟2
,−1

4
𝜆2𝑟2

)︁
.

Очевидно, каждое из этих решений симметрично относительно перемен-
ных 𝑥, 𝑦, 𝑧 и 𝜉, 𝜂, 𝜁, следовательно, они удовлетворяют уравнению (15) как по
переменным 𝑥, 𝑦, 𝑧, так и по 𝜉, 𝜂, 𝜁. Однако эти функции не удовлетворяют
сопряженному уравнению (16) по переменным 𝑥, 𝑦, 𝑧.

Справедлива следующая
Лемма 1. Если функция 𝑤(𝑥, 𝑦, 𝑧; 𝜉, 𝜂, 𝜁) удовлетворяет уравнению (15)

по переменным 𝜉, 𝜂, 𝜁, то функция

𝑞(𝑥, 𝑦, 𝑧; 𝜉, 𝜂, 𝜁) = 𝑥2𝛼𝑦2𝛽𝑧2𝛾𝑤(𝑥, 𝑦, 𝑧; 𝜉, 𝜂, 𝜁)

удовлетворяет сопряженному уравнению (16) по переменным 𝑥, 𝑦, 𝑧.

До к а з ат е л ь ств о. Пусть некоторая функция 𝑤(𝑥, 𝑦, 𝑧; 𝜉, 𝜂, 𝜁) удовле-
творяет уравнению (15) по переменным 𝜉, 𝜂, 𝜁, тогда в силу симметричности
она удовлетворяет этому же уравнению по переменным 𝑥, 𝑦, 𝑧, т.е. 𝐿(𝑤) = 0.
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Теперь подставим функцию 𝑞(𝑥, 𝑦, 𝑧; 𝜉, 𝜂, 𝜁) в сопряженное уравнение (16).
С этой целью вычислим необходимые производные:

𝜕𝑞

𝜕𝑥
= 2𝛼𝑥2𝛼−1𝑦2𝛽𝑧2𝛾𝑤 + 𝑥2𝛼𝑦2𝛽𝑧2𝛾𝑤𝑥,

𝜕2𝑞

𝜕𝑥2
= 2𝛼(2𝛼− 1)𝑥2𝛼−2𝑦2𝛽𝑧2𝛾𝑤 + 4𝛼𝑥2𝛼−1𝑦2𝛽𝑧2𝛾𝑤𝑥 + 𝑥2𝛼𝑦2𝛽𝑧2𝛾𝑤𝑥𝑥,

𝜕

𝜕𝑥

(︁2𝛼𝑞
𝑥

)︁
= 2𝛼(2𝛼− 1)𝑥2𝛼−2𝑦2𝛽𝑧2𝛾𝑤 + 2𝛼𝑥2𝛼−1𝑦2𝛽𝑧2𝛾𝑤𝑥

и аналогично по переменным 𝑦 и 𝑧.
Подставив вычисленные производные в сопряженное уравнение (16), по-

лучим
𝐿*(𝑞) = 𝑥2𝛼𝑦2𝛽𝑧2𝛾𝐿(𝑤) = 0.

Последнее равенство доказывает лемму 1. �
Таким образом, следующие функции удовлетворяют первым двум усло-

виям определения 1:

𝑞0 = 𝑥2𝛼𝑦2𝛽𝑧2𝛾𝑟−2𝑎H
(3,1)
𝐴

[︂
𝑎, 𝛼, 𝛽, 𝛾;
2𝛼, 2𝛽, 2𝛾;

𝑋

]︂
, (17)

𝑞11 = 𝑥𝑦2𝛽𝑧2𝛾𝜉1−2𝛼𝑟4𝛼−2𝑎−2H
(3,1)
𝐴

[︂
𝑎+ 1− 2𝛼, 1− 𝛼, 𝛽, 𝛾;

2− 2𝛼, 2𝛽, 2𝛾;
𝑋

]︂
, (18)

𝑞12 = 𝑥2𝛼𝑦𝑧2𝛾𝜂1−2𝛽𝑟4𝛽−2𝑎−2H
(3,1)
𝐴

[︂
𝑎+ 1− 2𝛽, 𝛼, 1− 𝛽, 𝛾;

2𝛼, 2− 2𝛽, 2𝛾;
𝑋

]︂
, (19)

𝑞13 = 𝑥2𝛼𝑦2𝛽𝑧𝜁1−2𝛾𝑟4𝛾−2𝑎−2H
(3,1)
𝐴

[︂
𝑎+ 1− 2𝛾, 𝛼, 𝛽, 1− 𝛾;

2𝛼, 2𝛽, 2− 2𝛾;
𝑋

]︂
, (20)

𝑞21 = 𝑥𝑦𝑧2𝛾𝜉1−2𝛼𝜂1−2𝛽𝑟4𝛼+4𝛽−2𝑎−4×

×H
(3,1)
𝐴

[︂
𝑎+ 2− 2𝛼− 2𝛽, 1− 𝛼, 1− 𝛽, 𝛾;

2− 2𝛼, 2− 2𝛽, 2𝛾;
𝑋

]︂
, (21)

𝑞22 = 𝑥𝑦2𝛽𝑧𝜉1−2𝛼𝜁1−2𝛾𝑟4𝛼+4𝛾−2𝑎−4×

×H
(3,1)
𝐴

[︂
𝑎+ 2− 2𝛼− 2𝛾, 1− 𝛼, 𝛽, 1− 𝛾;

2− 2𝛼, 2𝛽, 2− 2𝛾;
𝑋

]︂
, (22)

𝑞23 = 𝑥2𝛼𝑦𝑧𝜂1−2𝛽𝜁1−2𝛾𝑟4𝛽+4𝛾−2𝑎−4×

×H
(3,1)
𝐴

[︂
𝑎+ 2− 2𝛽 − 2𝛾, 𝛼, 1− 𝛽, 1− 𝛾;

2𝛼, 2− 2𝛽, 2− 2𝛾;
𝑋

]︂
, (23)

𝑞3 = 𝑘3𝑥𝑦𝑧𝜉
1−2𝛼𝜂1−2𝛽𝜁1−2𝛾𝑟4𝛼+4𝛽+4𝛾−2𝑎−6×

×H
(3,1)
𝐴

[︂
𝑎+ 3− 2𝛼− 2𝛽 − 2𝛾, 1− 𝛼, 1− 𝛽, 1− 𝛾;

2− 2𝛼, 2− 2𝛽, 2− 2𝛾;
𝑋

]︂
.(24)

Лемма 2. Если 0 < 2𝛼, 2𝛽, 2𝛾 < 1, то каждая из функций, определенных
равенствами (17)–(24), имеет особенность порядка 1/𝑟 при 𝑟 → 0.

До к а з ат е л ь ств о. Рассмотрим в качестве примера функцию 𝑞3, опре-
деленную в (24). Для остальных функций утверждение устанавливается ана-
логично.
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Функцию 𝑞3 можно представить в виде

𝑞3(𝑥, 𝑦, 𝑧; 𝜉, 𝜂, 𝜁;𝜆) =
1

𝑟
· 𝑞3(𝑥, 𝑦, 𝑧; 𝜉, 𝜂, 𝜁;𝜆), (25)

где

𝑞3 = 𝑘3𝑥𝑦𝑧𝜉
1−2𝛼𝜂1−2𝛽𝜁1−2𝛾𝑟2𝛼+2𝛽+2𝛾−6×

×H
(3,1)
𝐴

[︂
7/2− 𝛼− 𝛽 − 𝛾, 1− 𝛼, 1− 𝛽, 1− 𝛾;

2− 2𝛼, 2− 2𝛽, 2− 2𝛾;
𝑋

]︂
,

𝑘3 =
Γ(7/2− 𝛼− 𝛽 − 𝛾)Γ(1− 𝛼)Γ(1− 𝛽)Γ(1− 𝛾)

𝜋3/24𝛼+𝛽+𝛾−2Γ(2− 2𝛼)Γ(2− 2𝛽)Γ(2− 2𝛾)
. (26)

Покажем, что функция 𝑞3 ограничена при 𝑟 → 0. С этой целью в правой
части (25) произведем замену переменных:

𝜉 = 𝑥+ 𝜀𝑡, 𝜂 = 𝑦 + 𝜀𝑠, 𝜁 = 𝑧 + 𝜀𝑣,

где 𝑡, 𝑠, 𝑣 — новые переменные и 𝜀 > 0, тогда получим

𝑞3(𝑥, 𝑦, 𝑧;𝑥+ 𝜀𝑡, 𝑦 + 𝜀𝑠, 𝑧 + 𝜀𝑣) =

= 𝑘3𝑥𝑦𝑧(𝑥+ 𝜀𝑡)1−2𝛼(𝑦 + 𝜀𝑠)1−2𝛽(𝑧 + 𝜀𝑣)1−2𝛾
[︀
𝜀2(𝑡2 + 𝑠2 + 𝑣2)

]︀𝛼+𝛽+𝛾−3×

×H
(3,1)
𝐴

[︂
7/2− 𝛼− 𝛽 − 𝛾, 1− 𝛼, 1− 𝛽, 1− 𝛾;

2− 2𝛼, 2− 2𝛽, 2− 2𝛾;

− 4𝑥(𝑥+ 𝜀𝑡)

𝜀2(𝑡2 + 𝑠2 + 𝑣2)
,− 4𝑦(𝑦 + 𝜀𝑠)

𝜀2(𝑡2 + 𝑠2 + 𝑣2)
,− 4𝑧(𝑧 + 𝜀𝑣)

𝜀2(𝑡2 + 𝑠2 + 𝑣2)

]︂
.

Переходя к пределу при 𝜀 → 0 и используя теорему 2 о предельных зна-
чениях конфлюэнтной гипергеометрической функции (см. формулу (10)), по-
лучим

lim
𝜀→0

𝑞3 =
1

4𝜋
<∞.

Лемма 2 доказана. �
Следовательно, функции, определенные равенствами (17)–(24), являются

фундаментальными решениями трехмерного сингулярного уравнения Гельм-
гольца (15).

4. Постановка задачи Дирихле и теорема единственности.
Задача Дирихле. Найти регулярное решение 𝑢(𝑥, 𝑦, 𝑧) сингулярного урав-

нения Гельмгольца (15) из класса функций 𝐶(Ω) ∩ 𝐶2(Ω), удовлетворяющее
условиям

𝑢(𝑥, 𝑦, 0) = 𝜏1(𝑥, 𝑦), 0 6 𝑥, 𝑦 <∞, (27)
𝑢(𝑥, 0, 𝑧) = 𝜏2(𝑥, 𝑧), 0 6 𝑥, 𝑧 <∞, (28)
𝑢(0, 𝑦, 𝑧) = 𝜏3(𝑦, 𝑧), 0 6 𝑦, 𝑧 <∞, (29)

и условию исчезновения на бесконечности

lim
𝑅→∞

𝑢(𝑥, 𝑦, 𝑧) = 0, 𝑅 =
√︀
𝑥2 + 𝑦2 + 𝑧2, (30)
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где 𝜏1(𝑡, 𝑠), 𝜏2(𝑡, 𝑠), 𝜏3(𝑡, 𝑠)— заданные функции вида

𝜏1(𝑥, 𝑦) =
𝜏1(𝑥, 𝑦)

(1 + 𝑥2 + 𝑦2)𝜀1𝑒|𝜆|
√

𝑅2+𝑥2+𝑦2
, 𝜏1(𝑥, 𝑦) ∈ 𝐶(0 6 𝑥, 𝑦 <∞), (31)

𝜏2(𝑥, 𝑧) =
𝜏2(𝑥, 𝑧)

(1 + 𝑥2 + 𝑧2)𝜀2𝑒|𝜆|
√
𝑅2+𝑥2+𝑧2

, 𝜏2(𝑥, 𝑧) ∈ 𝐶(0 6 𝑥, 𝑧 <∞), (32)

𝜏3(𝑦, 𝑧) =
𝜏3(𝑦, 𝑧)

(1 + 𝑦2 + 𝑧2)𝜀3𝑒|𝜆|
√

𝑅2+𝑦2+𝑧2
, 𝜏3(𝑦, 𝑧) ∈ 𝐶(0 6 𝑦, 𝑧 <∞), (33)

причем 3−𝛼−𝛽−𝛾
2 < 𝜀1, 𝜀2, 𝜀3 < 2.

Кроме того, функции 𝜏1(𝑥, 𝑦), 𝜏2(𝑥, 𝑧) и 𝜏3(𝑦, 𝑧) удовлетворяют условиям
согласования в начале координат:

𝜏1(0, 0) = 𝜏2(0, 0) = 𝜏3(0, 0)

и на границах области Ω:

𝜏1(𝑥, 0) = 𝜏2(𝑥, 0), 𝜏1(0, 𝑦) = 𝜏3(𝑦, 0), 𝜏2(0, 𝑧) = 𝜏3(0, 𝑧), 𝑥, 𝑦, 𝑧 ∈ Ω.

Здесь Ω обозначает замыкание области Ω:

Ω = {(𝑥, 𝑦, 𝑧) : 𝑥 > 0, 𝑦 > 0, 𝑧 > 0}.

Теорема 3. Задача Дирихле для сингулярного уравнения Гельмгольца (3)
в бесконечной области Ω может иметь не более одного решения.

До к а з ат е л ь ств о. Достаточно показать, что соответствующая одно-
родная задача имеет только тривиальное решение. Рассмотрим конечную
подобласть Ω𝑅 ⊂ Ω, ограниченную координатными плоскостями 𝑥 = 0, 𝑦 = 0,
𝑧 = 0 и октантом сферы радиуса 𝑅:

𝜎𝑅 := {(𝑥, 𝑦, 𝑧) : 𝑥2 + 𝑦2 + 𝑧2 = 𝑅2, 𝑥 > 0, 𝑦 > 0, 𝑧 > 0}.

В случае однородных граничных условий

𝜏1(𝑥, 𝑦) = 0, 𝜏2(𝑥, 𝑧) = 0, 𝜏3(𝑦, 𝑧) = 0,

согласно принципу экстремума для эллиптических уравнений [32, гл. 1], функ-
ция 𝑢(𝑥, 𝑦, 𝑧) достигает своих экстремальных значений в Ω𝑅 только на 𝜎𝑅.

Для произвольной точки (𝑥, 𝑦, 𝑧) ∈ Ω𝑅 и любого 𝜀 > 0 выберем 𝑅 до-
статочно большим, чтобы |𝑢(𝑥, 𝑦, 𝑧)| < 𝜀 на 𝜎𝑅. Тогда в силу принципа мак-
симума |𝑢(𝑥, 𝑦, 𝑧)| < 𝜀 во всей области Ω𝑅. Поскольку 𝜀 произвольно мало,
заключаем, что 𝑢(𝑥, 𝑦, 𝑧) ≡ 0 в Ω. Теорема 3 доказана. �

5. Существование решения задачи Дирихле. Пусть (𝜉, 𝜂, 𝜁) ∈ Ω𝑅.
Вырежем из области Ω𝑅 шар достаточно малого радиуса 𝜀 с центром в точке
(𝜉, 𝜂, 𝜁) и оставшуюся часть области Ω𝑅 обозначим через Ω𝜀, а через 𝐶𝜀 —
сферу вырезанного шара. Используя известную формулу Грина, получим
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𝐶𝜀

(︁
𝑢
𝜕𝑞3
𝜕𝑁

− 𝑞3
𝜕𝑢

𝜕𝑁

)︁
𝑑𝐶𝜀 = −

∫︁
𝜎𝑅

𝑢
𝜕𝑞3
𝜕𝑀

𝑑𝜎𝑅 +

∫︁
𝐷1

𝑢(𝑥, 𝑦, 0)
𝜕𝑞3
𝜕𝑧

⃒⃒⃒
𝑧=0

𝑑𝑥𝑑𝑦 +

+

∫︁
𝐷2

𝑢(𝑥, 0, 𝑧)
𝜕𝑞3
𝜕𝑦

⃒⃒⃒
𝑦=0

𝑑𝑥𝑑𝑧 +

∫︁
𝐷3

𝑢(0, 𝑦, 𝑧)
𝜕𝑞3
𝜕𝑥

⃒⃒⃒
𝑥=0

𝑑𝑦𝑑𝑧, (34)

где 𝑢(𝑥, 𝑦, 𝑧)— искомое решение уравнения (15); 𝑞3(𝑥, 𝑦, 𝑧; 𝜉, 𝜂, 𝜁)— фундамен-
тальное решение уравнения (15), определенное в (24); 𝑁 и 𝑀 — внешние нор-
мали к 𝐶𝜀 и 𝜎𝑅 соответственно; 𝐷1, 𝐷2 и 𝐷3 — боковые грани области Ω𝑅:

𝐷1 := {(𝑥, 𝑦, 𝑧) : 𝑥2 + 𝑦2 < 𝑅2, 𝑥 > 0, 𝑦 > 0, 𝑧 = 0},
𝐷2 := {(𝑥, 𝑦, 𝑧) : 𝑥2 + 𝑧2 < 𝑅2, 𝑥 > 0, 𝑦 = 0, 𝑧 > 0},
𝐷3 := {(𝑥, 𝑦, 𝑧) : 𝑦2 + 𝑧2 < 𝑅2, 𝑥 = 0, 𝑦 > 0, 𝑧 > 0}.

Следуя работе [18], будем иметь

lim
𝜀→0

∫︁
𝐶𝜀

(︁
𝑢
𝜕𝑞3
𝜕𝑁

− 𝑞3
𝜕𝑢

𝜕𝑁

)︁
𝑑𝐶𝜀 = 𝑢(𝜉, 𝜂, 𝜁).

Далее, переходя к пределу в правой части (34) при 𝑅 → ∞ и учитывая при
этом условия задачи Дирихле, после некоторых преобразований получим

𝑢(𝑥, 𝑦, 𝑧) = 𝑢1(𝑥, 𝑦, 𝑧) + 𝑢2(𝑥, 𝑦, 𝑧) + 𝑢3(𝑥, 𝑦, 𝑧), (35)

где

𝑢1(𝑥, 𝑦, 𝑧) = (1− 2𝛾)𝑘3𝑥
1−2𝛼𝑦1−2𝛽𝑧1−2𝛾

∫︁ ∞

0

∫︁ ∞

0

𝜏1(𝑡, 𝑠)𝑡𝑠

𝑟2𝑎1
×

× A2

[︂
𝑎, 1− 𝛼, 1− 𝛽;
2− 2𝛼, 2− 2𝛽;

− 4𝑥𝑡

𝑟21
,−4𝑦𝑠

𝑟21
,−1

4
𝜆2𝑟21

]︂
𝑑𝑡𝑑𝑠, (36)

𝑢2(𝑥, 𝑦, 𝑧) = (1− 2𝛽)𝑘3𝑥
1−2𝛼𝑦1−2𝛽𝑧1−2𝛾

∫︁ ∞

0

∫︁ ∞

0

𝜏2(𝑡, 𝑠)𝑡𝑠

𝑟2𝑎2
×

× A2

[︂
𝑎, 1− 𝛼, 1− 𝛾;
2− 2𝛼, 2− 𝛾;

− 4𝑥𝑡

𝑟22
,−4𝑧𝑠

𝑟22
,−1

4
𝜆2𝑟22

]︂
𝑑𝑡𝑑𝑠, (37)

𝑢3(𝑥, 𝑦, 𝑧) = (1− 2𝛼)𝑘3𝑥
1−2𝛼𝑦1−2𝛽𝑧1−2𝛾

∫︁ ∞

0

∫︁ ∞

0

𝜏3(𝑡, 𝑠)𝑡𝑠

𝑟2𝑎3
×

× A2

[︂
𝑎, 1− 𝛾, 1− 𝛽;
2− 2𝛾, 2− 2𝛽;

− 4𝑦𝑡

𝑟23
,−4𝑧𝑠

𝑟23
,−1

4
𝜆2𝑟23

]︂
𝑑𝑡𝑑𝑠, (38)

𝑎 = 7/2− 𝛼− 𝛽 − 𝛾, 𝑟21 = (𝑥− 𝑡)2 + (𝑦 − 𝑠)2 + 𝑧2,

𝑟22 = (𝑥− 𝑡)2 + 𝑦2 + (𝑧 − 𝑠)2, 𝑟23 = 𝑥2 + (𝑦 − 𝑡)2 + (𝑧 − 𝑠)2.

Лемма 3. Если функцию 𝜏1(𝑥, 𝑦) можно представить в виде (31), то
функция 𝑢1(𝑥, 𝑦, 𝑧), определенная равенством (36), является регулярным ре-
шением уравнения (15) в области Ω, удовлетворяющим граничным условиям

𝑢1(𝑥, 𝑦, 0) = 𝜏1(𝑥, 𝑦), 𝑢1(𝑥, 0, 𝑧) = 0, 𝑢1(0, 𝑦, 𝑧) = 0, (39)

и условию исчезновения на бесконечности (30).
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До к а з ат е л ь ств о. Прежде всего мы должны убедиться в том, что
функция (36) удовлетворяет сингулярному уравнению Гельмгольца (15).

С этой целью рассмотрим вспомогательную функцию

𝑊 (𝑥, 𝑦, 𝑧; 𝑡, 𝑠) = 𝑥1−2𝛼𝑦1−2𝛽𝑧1−2𝛾𝑟−2𝑎
1 𝜔(𝜉, 𝜂, 𝜃), (40)

где

𝜔(𝜉, 𝜂, 𝜃) := A2

[︂
𝑎, 1− 𝛼, 1− 𝛽, 1− 𝛾;

2− 2𝛼, 2− 2𝛽, 2− 2𝛾;
𝜉, 𝜂, 𝜃

]︂
,

𝜉 = −4𝑥𝑡

𝑟21
, 𝜂 = −4𝑦𝑠

𝑟21
, 𝜃 = −𝜆

2

4
𝑟21.

Вычислим необходимые производные от вспомогательной функции 𝑊 по
переменным 𝑥, 𝑦, 𝑧 и подставим их в сингулярное уравнение Гельмгольца.
В результате получим соотношение

𝑊𝑥𝑥 +𝑊𝑦𝑦 +𝑊𝑧𝑧 +
2𝛼

𝑥
𝑊𝑥 +

2𝛽

𝑦
𝑊𝑦 +

2𝛾

𝑧
𝑊𝑧 − 𝜆2𝑊 =

= Λ
𝜉

𝑥

{︀
𝜉(1− 𝜉)𝜔𝜉𝜉 − 𝜉𝜂𝜔𝜉𝜂 + 𝜉𝜃𝜔𝜉𝜃 +

+ [2(1− 𝛼)− (2− 𝛼+ 𝑎)𝜉]𝜔𝜉 − 𝑎(1− 𝛼)𝜔
}︀
+

+ Λ
𝜂

𝑦

{︀
𝜂(1− 𝜂)𝜔𝜂𝜂 − 𝜉𝜂𝜔𝜉𝜂 + 𝜂𝜃𝜔𝜂𝜃 +

+ [2(1− 𝛽)− (2− 𝛽 + 𝑎)𝜂]𝜔𝜂 − 𝑎(1− 𝛽)𝜔
}︀
+

+ 𝜃
{︀
𝜃𝜔𝜃𝜃 − 𝜉𝜔𝜉𝜃 − 𝜂𝜔𝜂𝜃 + (1− 𝑎)𝜔𝜃 − 𝜔

}︀
= 0,

где Λ = 𝑥1−2𝛼𝑦1−2𝛽𝑧1−2𝛾𝑟−2𝑎
1 , которое равносильно следующей системе урав-

нений гипергеометрического типа:⎧⎨⎩
𝜉(1− 𝜉)𝜔𝜉𝜉 − 𝜉𝜂𝜔𝜉𝜂 + 𝜉𝜃𝜔𝜉𝜃 + [2(1− 𝛼)− (2− 𝛼+ 𝑎)𝜉]𝜔𝜉 − 𝑎(1− 𝛼)𝜔 = 0,

𝜂(1− 𝜂)𝜔𝜂𝜂 − 𝜉𝜂𝜔𝜉𝜂 + 𝜂𝜃𝜔𝜂𝜃 + [2(1− 𝛽)− (2− 𝛽 + 𝑎)𝜂]𝜔𝜂 − 𝑎(1− 𝛽)𝜔 = 0,

𝜃𝜔𝜃𝜃 − 𝜉𝜔𝜉𝜃 − 𝜂𝜔𝜂𝜃 + (1− 𝑎)𝜔𝜃 − 𝜔 = 0.

Сопоставляя последнюю систему уравнений с системой уравнений (14)
для конфлюэнтной функции A2, можно заключить, что функция (40) явля-
ется решением сингулярного уравнения Гельмгольца. Следовательно, функ-
ция 𝑢1(𝑥, 𝑦, 𝑧), определенная равенством (36), удовлетворяет сингулярному
уравнению Гельмгольца (15).

Теперь докажем, что функция 𝑢1(𝑥, 𝑦, 𝑧) удовлетворяет граничным усло-
виям (39). Действительно, введя в подынтегральной функции в (36) вместо 𝑡
и 𝑠 новые переменные 𝜇 = (𝑡− 𝑥)/𝑧 и 𝜈 = (𝑠− 𝑦)/𝑧, получим

𝑢1 = (1−2𝛾)𝑘3
𝑥1−2𝛼𝑦1−2𝛽

𝑧4−2𝛼−2𝛽

∫︁ ∞

−𝑥/𝑧

∫︁ ∞

−𝑦/𝑧

𝜏1 (𝑥+ 𝜇𝑧, 𝑦 + 𝜈𝑧;𝜆) (𝑥+ 𝑧𝜇)(𝑦 + 𝑧𝜈)

𝐾𝑎
×

× A2

[︂
𝑎, 1− 𝛼, 1− 𝛽;
2− 2𝛼, 2− 2𝛽;

4𝑥(𝑥+ 𝑧𝜇)

𝑧2𝐾
,
4𝑦(𝑦 + 𝜈𝑧)

𝑧2𝐾
,−1

4
𝜆2𝑧2𝐾

]︂
𝑑𝜇𝑑𝜈, (41)
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где 𝐾 := 1 + 𝜇2 + 𝜈2.
Используя теорему 2 о предельных значениях конфлюэнтной гипергео-

метрической функции (см. формулу (10)), в правой части (41) переходим
к пределу при 𝑧 → 0. Учитывая выражение (26) для коэффициента 𝑘3, из-
вестную формулу для вычисления двукратного несобственного интеграла [33,
стр. 633, фор. 4.623]∫︁ ∞

0

∫︁ ∞

0
𝜙(𝑎2𝑥2 + 𝑏2𝑦2)𝑑𝑥𝑑𝑦 =

𝜋

4𝑎𝑏

∫︁ ∞

0
𝜙(𝑥)𝑑𝑥

и формулу Лежандра для удвоения аргумента гамма-функции [31, стр. 19,
фор. (15)]

Γ(2𝑧) =
22𝑧−1

√
𝜋

Γ(𝑧)Γ
(︁
𝑧 +

1

2

)︁
,

получим
lim
𝑧→0

𝑢1(𝑥, 𝑦, 𝑧) = 𝜏1(𝑥, 𝑦). (42)

Совершив аналогичные преобразования, имеем

lim
𝑥→0

𝑢1(𝑥, 𝑦, 𝑧) = 0, lim
𝑦→0

𝑢1(𝑥, 𝑦, 𝑧) = 0. (43)

Следовательно, на основании равенств (42) и (43) заключаем, что функция
𝑢1(𝑥, 𝑦, 𝑧), определенная равенством (36), удовлетворяет условиям (39).

Остается показать исчезновение функции 𝑢1(𝑥, 𝑦, 𝑧) на бесконечности. Вос-
пользовавшись формулой преобразования (см. фор. (9))

A2

[︂
𝑎, 𝑏1, 𝑏2;
𝑐1, 𝑐2;

𝑥, 𝑦, 𝑧

]︂
= (1− 𝑥− 𝑦)−𝑎 ×

× A2

[︂
𝑎, 𝑐1 − 𝑏1, 𝑐2 − 𝑏2;

𝑐1, 𝑐2;
− 𝑥

1− 𝑥− 𝑦
,− 𝑦

1− 𝑥− 𝑦
, (1− 𝑥− 𝑦)𝑧

]︂
,

функцию (36) запишем в виде

𝑢1(𝑥, 𝑦, 𝑧) = (1/2− 𝛾)𝑘3𝑥
1−2𝛼𝑦1−2𝛽𝑧1−2𝛾

∫︁ ∞

0

∫︁ ∞

0

𝜏1(𝑡, 𝑠)𝑡𝑠

𝜌2𝑎
×

× A2

[︂
𝑎, 1− 𝛼, 1− 𝛽;
2− 2𝛼, 2− 2𝛽;

4𝑥𝑡

𝜌2
,
4𝑦𝑠

𝜌2
,−1

4
𝜆2𝜌2

]︂
𝑑𝑡𝑑𝑠, (44)

где 𝜌2 = (𝑥+ 𝑡)2 + (𝑦 + 𝑠)2 + 𝑧2.
Нетрудно заметить, что в (44) справедливо неравенство

4𝑥𝑡

𝜌2
+

4𝑦𝑠

𝜌2
< 1, 𝑥 > 0, 𝑦 > 0, 𝑧 > 0, 𝑡 > 0, 𝑠 > 0.

Докажем, что при стремлении точки (𝑥, 𝑦, 𝑧) к бесконечности, т.е. при
𝑅 → ∞, функция (44) стремится к нулю. С этой целью конфлюэнтную ги-
пергеометрическую функцию A2 представим виде

A2

[︂
𝑎, 𝑏1, 𝑏2;
𝑐1, 𝑐2;

𝑥, 𝑦, 𝑧

]︂
=

∞∑︁
𝑘=0

(−1)𝑘𝑧𝑘

(1− 𝑎)𝑘𝑘!
𝐹2(𝑎− 𝑘, 𝑏1, 𝑏2; 𝑐1, 𝑐2;𝑥, 𝑦),
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где 𝐹2 — гипергеометрическая функция Аппеля (6).
Из теории функций Аппеля [24] известно, что если |𝑥|+ |𝑦| < 1, то при лю-

бых значениях числовых параметров гипергеометрическая функция Аппеля
𝐹2 ограничена:

|𝐹2(𝑎, 𝑏1, 𝑏2; 𝑐1, 𝑐2;𝑥, 𝑦)| 6 𝐶1, |𝑥|+ |𝑦| < 1,

следовательно, имеем оценку

|𝑢1| 6 𝐶2𝑥
1−2𝛼𝑦1−2𝛽𝑧1−2𝛾

∫︁ ∞

0

∫︁ ∞

0

|𝜏1(𝑡, 𝑠)|𝑡𝑠
𝜌7−2𝛼−2𝛽−2𝛾 0𝐹1

(︁
𝑏;
𝜆2

4
𝜌2
)︁
𝑑𝑡𝑑𝑠, (45)

где 𝑏 = 𝛼+ 𝛽 + 𝛾 − 5/2.
Здесь под интегралом 0𝐹1 обозначает обобщенную гипергеометрическую

функцию [34, стр. 437, фор. 7.2.3(1)], для которой справедлива следующая
формула связи [34, стр. 594, фор. 7.13.1(1)]:

0𝐹1(𝑏; 𝑧) = Γ(𝑏)𝑧(1−𝑏)/2𝐼𝑏−1(2
√
𝑧), (46)

где

𝐼𝛼 (𝑧) =
∞∑︁

𝑚=0

1

𝑚!Γ(𝑚+ 𝛼+ 1)

(︁𝑧
2

)︁2𝑚+𝛼

— модифицированная функция Бесселя [15, гл. 1, фор. (1.84)]. Далее, приме-
няя последовательно к правой части (45) формулу связи (46), асимптотиче-
ское представление [35, стр. 93]

𝐼𝛼(𝑧) ∼
1√
2𝜋𝑧

𝑒𝑧, −𝜋
2
< arg 𝑧 <

3𝜋

2

и представление (31) для заданной функции 𝜏1, получим

|𝑢1| 6 𝐶3𝑥
1−2𝛼𝑦1−2𝛽𝑧1−2𝛾

∫︁ ∞

0

∫︁ ∞

0

𝑒|𝜆|𝜌𝑡𝑠𝑑𝑡𝑑𝑠

𝑒|𝜆|
√
𝑅2+𝑡2+𝑠2(1 + 𝑡2 + 𝑠2)𝜀1𝜌4−𝛼−𝛽−𝛾

.

Выполнив замену 𝑡 = 𝑅𝜇, 𝑠 = 𝑅𝜈 в последнем двойном несобственном инте-
грале, получим

|𝑢1| 6 𝐶3

(︁ 𝑥
𝑅

)︁1−2𝛼(︁ 𝑦
𝑅

)︁1−2𝛽(︁ 𝑧
𝑅

)︁1−2𝛾 𝐾(𝑥, 𝑦)

𝑅2𝜀1−3+𝛼+𝛽+𝛾
, (47)

где

𝜀1 >
3

2
− 𝛼+ 𝛽 + 𝛾

2
,

𝐾(𝑥, 𝑦) =

∫︁ ∞

0

∫︁ ∞

0

𝑒
|𝜆|𝑅

(︀√︁
1+𝜇2+𝜈2+ 2𝑥

𝑅
+ 2𝑦

𝑅
−
√

1+𝜇2+𝜈2
)︀
𝜇𝜈𝑑𝜇𝑑𝜈

(𝜇2 + 𝜈2)𝜀1(1 + 𝜇2 + 𝜈2)(4−𝛼−𝛽−𝛾)/2
. (48)

Покажем, что двойной несобственный интеграл в правой части (48) огра-
ничен при 𝑅→ ∞. Действительно, используя формулу [36]
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∫︁ +∞

0
· · ·

∫︁ +∞

0⏟  ⏞  
𝑛

𝑥𝑝1−1
1 · · ·𝑥𝑝𝑛−1

𝑛 𝑑𝑥1 · · · 𝑑𝑥𝑛
[(𝑟1𝑥1)𝑞1 + · · ·+ (𝑟𝑛𝑥𝑛)𝑞𝑛 ]𝑡[1 + (𝑟1𝑥1)𝑞1 + · · ·+ (𝑟𝑛𝑥𝑛)𝑞𝑛 ]𝑠

=

=
Γ(𝑝1/𝑞1) · · ·Γ(𝑝𝑛/𝑞𝑛)Γ(𝑃 − 𝑡)Γ(𝑠+ 𝑡− 𝑃 )

𝑞1𝑞2 · · · 𝑞𝑛𝑟𝑝1𝑞11 · · · 𝑟𝑝𝑛𝑞𝑛𝑛 Γ(𝑃 )Γ(𝑠)
,

где 𝑃 := 𝑝1/𝑞1 + · · ·+ 𝑝𝑛/𝑞𝑛; 𝑝𝑘, 𝑞𝑘, 𝑟𝑘 и 𝑠— положительные числа (𝑘 = 1, 𝑛),
0 < 𝑃 − 𝑡 < 𝑠, и переходя к пределу при 𝑅→ ∞, будем иметь соотношение

lim
𝑅→∞

𝐾(𝑥, 𝑦) =
Γ(2− 𝜀1)Γ

(︀
(2𝜀1 − 𝛼− 𝛽 − 𝛾)/2

)︀
4Γ

(︀
(4− 𝛼− 𝛽 − 𝛾)/2

)︀ , 𝜀1 < 2. (49)

Таким образом, в силу (47) и (49) справедлива оценка

|𝑢1| 6
𝐶3

𝑅2𝜀1−3+𝛼+𝛽+𝛾
,

3

2
− 𝛼+ 𝛽 + 𝛾

2
< 𝜀1 < 2, 𝑅→ ∞,

учитывая которую, заключаем, что функция (41) обращается в нуль на бес-
конечности. Лемма 3 доказана. �

Замечание 1. Повторяя рассуждения, проведенные в лемме 3, можно до-
казать еще две леммы относительно функций 𝑢2(𝑥, 𝑦, 𝑧) и 𝑢3(𝑥, 𝑦, 𝑧), опреде-
ленных, соответственно, равенствами (37) и (38). Так что если для заданных
функций 𝜏2(𝑥, 𝑧) и 𝜏3(𝑦, 𝑧) справедливы представления (32) и (33), то каждая
из функций 𝑢2(𝑥, 𝑦, 𝑧) и 𝑢3(𝑥, 𝑦, 𝑧) является решением сингулярного урав-
нения Гельмгольца (3), изчезающим на бесконечности и удовлетворяющим
совокупности условий

𝑢2(𝑥, 𝑦, 0) = 0, 𝑢2(𝑥, 0, 𝑧) = 𝜏2(𝑥, 𝑧), 𝑢2(0, 𝑦, 𝑧) = 0,

𝑢3(𝑥, 𝑦, 0) = 0, 𝑢3(𝑥, 0, 𝑧) = 0, 𝑢3(0, 𝑦, 𝑧) = 𝜏3(𝑦, 𝑧)

соответственно.
Теорема 4. Если функции 𝜏1(𝑥, 𝑦), 𝜏2(𝑥, 𝑧) и 𝜏3(𝑦, 𝑧) удовлетворяют усло-

виям (31), (32) и (33) соответственно, то функция 𝑢(𝑥, 𝑦, 𝑧), определенная
в (35), является регулярным решением уравнения (15) в области Ω, удовле-
творяющим условиям (27)–(30).

До к а з ат е л ь ств о теоремы 4 следует из леммы 3 и замечания 1.

Заключение. Установлены новые свойства конфлюэнтных гипергеомет-
рических функций многих переменных и доказана теорема о значениях ги-
пергеометрической функции при предельных значениях переменных, име-
ющая важное приложение при решении краевых задач для эллиптических
уравнений с сингулярными коэффициентами.

На основе известных линейно независимых решений трехмерного сингу-
лярного уравнения Гельмгольца построены фундаментальные решения дан-
ного уравнения, выражаемые через конфлюэнтную функцию от четырех пе-
ременных и с использованием доказанной предельной теоремы определен по-
рядок особенности этих решений.
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Впервые решена задача Дирихле для трехмерного уравнения Гельмгольца
с тремя сингулярными коэффициентами в бесконечной области. Единствен-
ность решения задачи доказана известным методом принципа экстремума
для эллиптических уравнений. Благодаря доказанным свойствам конфлю-
энтных гипергеометрических функций многих переменных решение постав-
ленной задачи удалось выписать в явном виде через конфлюэнтную функ-
цию от трех переменных. В дальнейшем полученное решение задачи Дирихле
может быть использовано при решении краевых задач для трехмерных син-
гулярных уравнений смешанного типа в качестве решения, принесенного из
эллиптической части смешанной области.

Результаты настоящей работы открывают путь к исследованию краевых
задач для сингулярных эллиптических уравнений. Используя построенные
фундаментальные решения, можно поставить и решить задачу Неймана и еще
несколько задач со смешанными условиями Дирихле и Неймана для трехмер-
ного уравнения Гельмгольца с тремя сингулярными коэффициентами в пер-
вом октанте или в других областях.

В настоящее время известны [29] все линейно независимые решения обоб-
щенного многомерного сингулярного уравнения Гельмгольца вида

𝑚∑︁
𝑘=1

𝜕2𝑢

𝜕𝑥2𝑘
+

𝑛∑︁
𝑘=1

2𝛼𝑘

𝑥𝑘

𝜕𝑢

𝜕𝑥𝑘
− 𝜆2𝑢 = 0, 𝑚 > 2, 𝑛 > 1, 𝑚 > 𝑛, 0 < 2𝛼𝑘 < 1, (50)

которые выражаются через конфлюэнтную функцию H
(𝑛,1)
𝐴 от 𝑛+1 перемен-

ных. Предлагается распространить результаты данной работы к многомер-
ному уравнению Гельмгольца с 𝑛 сингулярными коэффициентами (50).

Поэтому полученные в работе результаты можно рассматривать как на-
чальный этап исследования конфлюэнтных гипергеометрических функций
многих переменных и решения краевых задач для уравнения Гельмгольца
с тремя и более сингулярными коэффициентами.
Конкурирующие интересы. Заявляем, что в отношении авторства и публикации
этой статьи конфликта интересов не имеем.
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Abstract

In the course of a series of studies spanning the fifty-year period from
1889 to 1939, all double hypergeometric series of the second order were
systematically investigated. A significant contribution to the study of hy-
pergeometric functions of two variables was made by Horn, who proposed
their classification into two types: complete and confluent. Horn’s final list
comprised fourteen complete (non-confluent) functions of two variables and
twenty distinct confluent functions, which represent limiting cases of the
complete ones. In 1985, Srivastava and Karlsson completed the classifica-
tion of all possible second-order complete hypergeometric functions of three

Differential Equations and Mathematical Physics
Research Article
© The Author(s), 2025
© Samara State Technical University, 2025 (Compilation, Design, and Layout)
cb The content is published under the terms of the Creative Commons Attribution 4.0 In-

ternational License (http://creativecommons.org/licenses/by/4.0/)
Please cite this article in press as:
Ar z i k u l o v Z. O., H a s a n o v A., E r g a s h e v T. G. Confluent hypergeometric functions
and their application to the solution of Dirichlet problem for the Helmholtz equation with
three singular coefficients, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara
State Tech. Univ., Ser. Phys. Math. Sci.], 2025, vol. 29, no. 3, pp. 407–429. EDN: YWKYZB.
DOI: 10.14498/vsgtu2156 (In Russian).
Authors’ Details:
Zafarjon O. Arzikulov https://orcid.org/0009-0004-2965-4566
PhD; Senior Lecturer; Dept. of Higher Mathematics; e-mail: zafarbekarzikulov1984@gmail.
com
Anvardjan Hasanov https://orcid.org/0000-0002-9849-4103
Dr. Phys. & Math. Sci., Professor; Chief Research Fellow, Dept. of Differential Equations and
Their Applications2; Research Associate, Dept. of Mathematics, Analysis, Logic and Discrete
Mathematics4; e-mail: anvarhasanov@yahoo.com
Tuhtasin G. Ergashev https://orcid.org/0000-0003-3542-8309
Dr. Phys. & Math. Sci., Professor; Research Associate, Dept. of Differential Equations and
Their Applications2; Professor, Dept. of Higher Mathematics3; Research Associate, Dept. of
Mathematics, Analysis, Logic and Discrete Mathematics4; e-mail: ergashev.tukhtasin@gmail.
com

426

http://mi.mathnet.ru/eng/vsgtu2156
http://www.mathnet.ru/eng/org10994
http://www.mathnet.ru/eng/org10994
http://www.mathnet.ru/eng/org15396
http://www.mathnet.ru/eng/org15396
http://www.mathnet.ru/eng/org15396
http://www.mathnet.ru/eng/org11759
http://www.mathnet.ru/eng/org11759
http://www.mathnet.ru/eng/org11759
http://www.mathnet.ru/eng/org6189
http://www.mathnet.ru/eng/org6189
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://elibrary.ru/YWKYZB
http://mi.mathnet.ru/eng/vsgtu2156
http://www.mathnet.ru/eng/person214007
https://orcid.org/0009-0004-2965-4566
https://orcid.org/0009-0004-2965-4566
mailto:zafarbekarzikulov1984@gmail.com
mailto:zafarbekarzikulov1984@gmail.com
http://www.mathnet.ru/eng/person41932
https://orcid.org/0000-0002-9849-4103
https://orcid.org/0000-0002-9849-4103
mailto:anvarhasanov@yahoo.com
http://www.mathnet.ru/rus/person37309
https://orcid.org/0000-0003-3542-8309
https://orcid.org/0000-0003-3542-8309
mailto:ergashev.tukhtasin@gmail.com
mailto:ergashev.tukhtasin@gmail.com


Confluent hypergeometric functions and their application to the solution of Dirichlet problem . . .

variables, while a similar systematic classification for their confluent coun-
terparts remains incomplete. Thus, the theory of confluent hypergeometric
functions of three variables has not yet been fully developed, and the study
of functions of four variables represents an area for future research.

This paper investigates certain confluent hypergeometric functions of
three and four variables, establishing their new properties and applying them
to the solution of the Dirichlet problem for the three-dimensional Helmholtz
equation with three singular coefficients.

Fundamental solutions of the aforementioned Helmholtz equation are
expressed in terms of a confluent hypergeometric function of four variables,
while an explicit solution to the Dirichlet problem in the first octant is con-
structed using a function of three variables, which is derived as a trace of the
four-variable confluent function. A theorem on the computation of limiting
values of multivariate functions is proved, and transformation formulas for
these functions are established. These results are employed to determine the
singularity order of fundamental solutions and to validate the correctness of
the solution to the Dirichlet problem.

The uniqueness of the solution to the Dirichlet problem is proved using
the maximum principle for elliptic equations.

Keywords: multiple confluent hypergeometric function, PDE-systems of
hypergeometric type, singular Helmholtz equation, fundamental solution,
Dirichlet problem.
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