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Abstract. In this paper, the Kampé de Fériet functions of arbitrary orders and their Euler-type integral
representations are studied. The general form of the integral representations for a Kampé de Fériet function
are proved. Conditions, under which these representations are expressed in terms of products of two gen-
eralized hypergeometric functions, are found. Examples are identified in which the integral representation
of the Kampé de Fériet function contains an elementary function or a known second-order hypergeometric
function of two variables.
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1. Introduction

A great interest in the theory of hypergeometric functions (that is, hypergeometric functions of one,
two, and more variables) is motivated essentially by the fact that solutions of many applied problems
involving thermal conductivity and dynamics, electromagnetic oscillations and aerodynamics, quantum
mechanics and potential theory are obtainable with the help of hypergeometric (higher and special
or transcendent) functions [5,28,29]. Such kinds of functions are often called special functions of
mathematical physics.

It is known that the hypergeometric series F'(a, b;c; 2) [see equation (2.3)] were studied by Leon-
hard Euler. However, the first full systematic treatment was given by Carl Friedrich Gauss in 1813. In
the nineteenth century, Ernst Kummer (1836) and Bernhard Riemann (1857) proposed a fundamental
characterization of the hypergeometric functions by means of differential equations. The great success
of the theory of hypergeometric series in one variable stimulated the development of the corresponding
theory for the case of two or more variables. In 1880, Appell defined four series, F; to Fy [see equa-
tions (2.4)—(2.7)], all of which are analogous to the Gaussian hypergeometric functions F(a,b;c; z).
Picard pointed out that one of those series is intimately related to a function studied by Pochham-
mer in 1870. Picard and Goursat also constructed a theory of Appell’s series, which is analogous to
Riemann’s theory of Gauss hypergeometric series. P. Humbert has studied confluent hypergeometric
series in two variables [see equations (2.8)—(2.14)]. An extension of the results of the French school
together with references to the original literature can be found in the monograph by Appell and Kampé
de Fériet [3], which is a classic work on the subject. This work also contains an extensive bibliography
of all relevant papers up to 1926.

A great merit in the further development of the theory of the hypergeometric series in two variables
belongs to Horn, who gave a general definition and an order classification of double hypergeometric
series. He has investigated the convergence of hypergeometric series of two variables and established
which systems of partial differential equations they satisfy. Horn studied particular hypergeometric
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series of order two. He found that apart from certain series that are either expressible in terms of one
variable or are products of two hypergeometric series of one variable, there are essentially 34 distinct
convergent series of the second order.

Four Appell series were unified and generalized by Kampé de Fériet in [24]. He defined a general
hypergeometric series in two variables. However, the notation introduced by Kampé de Fériet for
his double hypergeometric series of higher orders was subsequently abbreviated by Burchnall and
Chaundy in [9]. Srivastava and Panda [38] gave a definition to a more general double hypergeometric
series (than that defined by Kampé de Fériet) in a slightly modified notation and announced some
groups of conditions on the parameters under which the Kampé de Fériet series converges in a non-
empty set. Interesting results in this direction have been obtained by many authors (see, for example,
works [10,11,13,25-27,30, 36]).

Many special functions appear as solutions of differential equations or integrals of elementary
functions (for instance, see [1,20-22,33]). Therefore, tables of integrals usually include descriptions
of special functions, whereas tables of special functions include most important integrals, at least,
the integral representations of special functions. Symmetries of differential equations are essential to
both physical and mathematical sciences. Therefore, the theory of integral representations is closely
related to the theory of special functions for certain topics in mathematical physics. For example, in
works [6,15], some Kampé de Fériet functions were studied, and owing to their properties, the authors
managed to obtain a solution to a boundary value problem for a differential equation in the explicit
form.

Integral representations are very important in the study of applied problems. Integral representa-
tions can be useful when solving integral equations with functions in kernels and when calculating the
values of explicit solutions to some applied problems. For evaluations and extensions of the results on
Euler-type integrals, we refer to paper [39]. Also, in this regard, it is noticed that the general sextic
equation can be solved in terms of the Kampé de Fériet function (see [12,34]). Therefore, the well-
known reference books [17,31,32], where the second-order hypergeometric functions (mainly in one and
two variables) are considered, are highly respected among applied scientists. Hasanov and Ruzhansky,
in 2019, constructed Euler-type integral representations for 205 second-order hypergeometric series in
three variables [19]. However, there are very few works on integral representations of hypergeometric
functions when their order exceeds two. We note only work [18], in which 18 integral representations
were constructed for some Kampé de Fériet functions of the fourth order.

In this paper, we obtain the Euler-type integral representations for the Kampé de Fériet functions
of arbitrary orders.

2. Preliminaries

With a view to introducing formally the Gauss hypergeometric series and its generalizations, we
recall here some definitions and identities involving the Beta function B(z,y), the Gamma function
I'(z), and the Pochhammer symbol (A),,.

The Gamma function I'(z) is defined by the integral

jotz_le_tdt, Re(z) > 0,
re)=14" 2.1)

r 1
w, Re(z) < 0; z# —1,-2,-3,...

Definition (2.1) was used by Euler, but there are also other definitions of Gamma function (see, for
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instance, [14]).
The Beta function is defined by the following integral representation

1
/ta L1 —)ftat = m Rea > 0, Ref > 0. (2.2)
0
The function
F(a,b;c;z)ZF[a’cb; z] ::kz_ong)(:)k',c#o o (2.3)

is known as the Gauss hypergeometric function.

In the Gauss hypergeometric series F'(a, b; ¢; z), there are two numerator parameters a and b, and
one denominator parameter c. A natural generalization of this series is accomplished by introducing
any arbitrary numbers of numerator and denominator parameters. The resulting series
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is known as the generalized Gauss series [14, p. 182] or, simply, the generalized hypergeometric series.
Here p and ¢ are positive integers or zero (interpreting the empty product as 1), and we assume that
the variable z, the numerator parameters aq,..., a,, and the denominator parameters b1, ..., by can
acquire complex values provided that b; # 0, —1, =2, ... (j =1, ..., ).

Gauss series (2.3) in the present notation looks like

a, b;

c;

oF1(a,b;c;2) = F [ z] = F(a,b;c; z).

The double Appell hypergeometric functions are defined as following [2]:

F (a, b, b c;x,y) _ io: (@)m+n(b)m (b/)n My (2.4)

o (€)m4nm!n!

- a)m+4n b m b/ n,m,n
b, (a,b, Ve, c’;x,y) = Z ((2) +(c(’)) T)”E'n)' x™y", (2.5)
m,n=0 m [
- D (0)m (V)
F / /. .. — (a’)m (CL )n ( m n,.m,n 2.
3 (a7 a abvb e ZL‘,y) m;:(] (C)m+nm!n! oy, ( 6)
£, (a, b, c’;x,y) _ Z Mxmy", (2.7)

o (©)m (¢),, m!n!

where, as usual, the denominator parameters ¢ and ¢’ are neither zero nor negative integers.

A standard work on the theory of Appell series is the monograph wrote by Appell and Kampé
de Fériet [3]. This monograph contains an extensive bibliography of all relevant papers up to 1926
(for example, by L. Pochhammer, J. Horn, E. Picard, and E. Gursat). See [14, pp. 222-245] for a
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review of subsequent works on the subject; see also Bailey [4], Exton [16], Slater [35], Srivastava and
Karlsson [37].

Seven confluent forms of the four Appell series were defined by Humbert [23], and he denoted these
confluent hypergeometric series in two variables by the following formulas:

N () S
Oy (o, B m,y) = D 7(7)mi”m,n”ffv y", lol <1, (2.8)
m,n=0 man e

i) S D)
B0 = 2 G ™ 29)

m,n=

O3 (B m,y) = Y Lxmy”, (2.10)

('y)m+n m!n!

> (a)m+n (B)m m, n

m,n=0

Uy (o, 857,75 2,y) = ey ] < 1 (2.11)
( )= 2 Bl i
\112 (04;'777/;$7y) = i %Tl"xmyn’ (212)
o (Y)m (),, m!n!
o /
B (o, Bivimy) = Y (@)1 (@) (,ﬂ),mwmy", |z < 1, (2.13)
oo (V) g m!n!
o0
—_ «
Ex (o Bsvimyy) = ) ()mi(mfn,ﬂ”y”, x| <1, (2.14)
o (V) g m!n!

where the denominator parameters v and 4 are neither zero nor negative integers. The hypergeometric
functions defined in (2.8)—(2.14) are called Humbert functions.

Just as the Gauss series F'(a,b;c;z) was generalized to ,F,; by increasing the numbers of the
numerator and denominator parameters, the four Appell series were unified and generalized by Kampé
de Fériet [24]. So he obtained a general hypergeometric series in two variables (see [3, p. 150, eq. (29)]).
The notation introduced by Kampé de Fériet for his double hypergeometric series of superior order
was subsequently abbreviated by Burchnall and Chaundy [9, p. 112]. Srivastava and Panda [38] (see
also [37, Section 3.1]) gave a definition to the more general double hypergeometric series (than that
defined by Kampé de Fériet) in a slightly modified notation

P q k
(o] a TS b T ¢ S
lp:q’k (ap) = (bg) ;(ck o y] _ Z jl;Il( ;) + jl;ll( ;) jl;ll( oy 215
man | (o) s (Bm) s (V)3 l m n rl s!’ '
(1) : (Bm) i (n) r,s=0 1;[ (a])TJrS 1;[1 (/Bj)r 1;[ (7])3

where, for convergence,
Dp+g<l+m+1l,p+k<l+n+1,|z| <oo, |yl < oo,
or

(i)p+g=l4+m+1,p+k=1+n+1, and

|$’1/(p_l)+|y|1/(p_l) < 1 lfp>l7
max {|z|, |y} <1 if p<1.
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Although the double hypergeometric series defined in (2.15) can be reduced to the Kampé de Fériet
series only in the special case ¢ = k and m = n, yet it is usually referred to in the literature as the
Kampé de Fériet series.

3. Integral representations

Theorem 3.1. Let p, q, k, I, m, and n be non-negative integers. If Re(a) > 0 and Re(B) > 0, then
the following integral representation formulas are valid:

p:q+1ik+1 (ap) 5(bq)704;(0k)75;$ ~ T(a+p) o
Frprm [(az),aJrﬁi (Bm) 5 (M) ’y] " T (a)T(B)

1
y /tal(l _ t)ﬁ*le:: q; k [EZS; (ﬁifsl)’(;’((si)) ;;a:t,y(l — t)] dt, (3.2)
0

1
» a—1/1 _ \B—1pgk (ap) : (bg) ; (ck) T _
0/ RS [<al>:<ﬁm>;<%>,ﬁ; byl ’”] dt, (33)

FPiask

[ (ap) t (bg) ;(Ck);x y] _ I'(a+p
brlimin (O‘l)7a+/8:(/8m);(7n)§ 7

1
) a—1
r<a>r</3>0/t "

Bl oa ik [(ap): (bg) ; (ck) . -
-t [ 00 o] an e

Proof. Equalities (3.1)—(3.4) follow easily from the definition of the Kampé de Fériet series (2.15) if
we use formula (2.2) for calculating the Beta function. O]

Next, we give some examples where the Kampé de Fériet functions can be represented as integrals
of either elementary functions or known hypergeometric functions.

Example 3.1. The following Appell and Humbert functions are expressed by the elementary and
Humbert functions, respectively, as follows:

I'(a+p5)

i S a=1/1 _ -1 ot — _ \—a
T ) (1—t)’ 'l —wt—y(1— )] "at,

Fl(avaaﬂ;a—i_ﬁ;xvy) =

o

26



1

/t“ Y1 =) W [a, b; b, B; xt, y(1 — t)] dt.
0

a—l—
<I>1(a,a;a+ﬂ;m,y)= B

Example 3.2. The following Kampé de Fériet functions are expressed by the Appell and Humbert
functions as follows:

1

r BB B
Fyoo C’a‘iﬁz‘b’_o";b’_ﬁzx, }— O‘Jrﬁ /t“ Y1 = )77 R [a,b,05 52t y(1 — 1)] dt,
) 0
_ , 1
F}%ﬁ afﬁ::b7ca;;bc”5;; , }— a—i—ﬁ /ta l1-t) 'R [a, b,V ¢, s wt, y(1 — t)] dt,
) 0
!/ / 1—‘( 5) L
0:3;3 - :a)bua;avbaﬁ; a+ / -1 p—1 ! /
; oyl = —— T [l T R a,d b,V e at, y(1 — t)] d,
2:0;0 |:C,Oé+61 - = ;:E :| I‘(a)F(B)O ( ) 3[(1& G y( )}

1
1 o 8 r -
e | = et [ e R e et~ )
Y Y 0

1
5. . - 3 I _
Fégézé[ ‘ :b’o‘iﬁtx,y] = po D [ - bty (1 - ] dn
0

1
022 [ — byl B I'(a+6) / a—1 B-1 /
; =L 1— ®  C; 1—
FQ;O;O |:C,O£ +B o xvy:| F(a)F(,B) t ( t) 2 [bvb e xt,y( t)] dtv
0

1
021 | — b f; 04+5 a 1
FO%s [c,a+5: o ;_;x,y] = /t L1 = )P @5 [b; c; ot y(1 — 1)) dt,
0
1T+ |
1:2;1 a :bo;f; _ I' (o + a—1¢1 _ n\p-1 . /. _
Fiia [Ox—i—ﬂ: . ;C,;m,y_ =TT ®) /t (1—¢)"" "Wy [a, b;ye,csxt,y(1 t)] dt,
0

1
1:1;1 a osf; | _ F(a—’_ﬁ) a=1/1 _ \f—-1 . /. _
Fl'l;l |:O[+IB :C;C,;l',y- = W t (1 t) \IIQ [a, C,C,l’t,y(l t)] dt7
0
"B I'(a+p) /
0:3;2 - ta,b, a5 dl, B a+ a—1 ) /
: =———— [ 1-1¢ =1 byc;xt,y(1 —t)| dt
#00 [C,omLB: - 5 = ] F(a)F(ﬁ)O/ (-0 S ad bicsat,y(1 - 0] db

) )

1

0:3;1 - : a,b,a; 5; . (a + /8) a—1 B—1= o _

Fyo0 LO‘ +3: . ,x,y] = W /t (1—t)" "Eaa,b;c;xt,y(1 —t)] dt.
0
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Corollary 3.1. Let Re(a) > 0 and Re(B) > 0. If p=10 and [ = 0, then the Kampé de Fériet function
defined in (2.15) can be represented as an integral of the product of two generalized hypergeometric
functions, viz.

[ — :(bg), i (ck), B; ]_ I'(a+p)

0q+1k+1
FrmSn la4 81 (Bn) 3 () Y] T (8) "

X /lt“ BEE Ll o8 |:((Bbr()]1));;$t:| ol [((ii)) ;;y(l —t)} dt,
0

Fqu+1[ — 1 (bg); (er), B, }:T(OHrﬁ)

i a4 B:(Bn)s () Y T T(@) T (B)
1
)

X /ta—l(l — ) P [(ﬁ(iq)) a;;:nt] o8 [((ii)) ;;y(l - t)} dt,
0

_ Lle+h)
m) 3(n) ;x’y] TTrE)”

x 0/1750‘1(1 e o8 [((gjj);;xt} Fin [( (c’)”@ (1 t)} dt,

FY ik [( )(al’) : (bg) ’(Ck) 'z y:| = E(g;fﬁ))x

=0T P [(B%), a;;”] el [(53),5;;“1 - “} dt.

X
O\H

Next, we give some examples where the Kampé de Fériet functions can be represented as an integral
of the product of the two (elementary and/or known hypergeometric) functions.

Example 3.3. The following integral representations of the Appell and Humbert functions are
known [7,8]:

1
Fs(a,b,a, B0+ B 2,y) = OH_B /t" L 1 —at)” [1—y+yt]_bdt,
0
1
Do, Bsa+ Bya,y) = OH_B /to‘ 1 ﬂ Lertey(1=t) gy
0
I'(a+B)

D3(a; o+ B x,y) = 21— )P et = B y(1 — )] dt,

()T (5)

o
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1
Ei(a, o, 85+ B 2,y) /ta L xt)_aey(l_t)dt,
0

1
Saa asat Bay) = — OO / (11— 5 (1 — at) 0 Fy [=: s y(1 — 1)) d.
0

Theorem 3.2. Let p, q, k, [, m, and n be non-negative integers. If
Re(a) >0, Re(B) > 0,Re(A) >0, Re(u) >0,

then the following double-integral representation formulas hold true:

p:q+2;k+2 ( ) (bq)v(X?)‘;(Ck)757,u;x _ F(a—I_ﬁ)F()\—I_M)
Frpam o {[aw Bu) 5 () ;’y]‘

< frema ) e s

p:q+lk+1 (ap):(bq)>a§(ck)a5§x _ F(a+6)r()‘+ﬂ)
Fivam [[al]: Bm) 5 (W) ; ’y] ()T (BTN (1) -

11
p: ; ap): (bg) ;5 (cx) ; ]
XO/O/fStFZmH”H[al)i(ﬁm),)\;(’yn),ﬂ;X’Y dsdt,

pig;k (ap)5(bq)§(ck)§ . F(a—i—ﬁ)f‘()\—l—u)
Firmin [ o] :(Brm) () 5 y} TT(@T BTN ()

1 1
P gk ap) : (bg) ; (ck) ]
’ o/o/f W itz { (01) “(Bm) et Ns(ym) B i T | 45

(3.5)

(3.8)
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<

pat1ik+2 |(ap) @ (by), 5,% 04+5 (A +p)
Fl“m?"[[]'(ﬁm); } (

1
P q ik (ap) = (bg) ; (ck); .
o/f mOn [(al) (B) s Xiln) 0 Y} dsdt, (3.11)

praabin [(ap) i(0) X (ex), 65 1 Lla+ AT +p)
Fizm i [[az]r (Bm) 5 (m) ;’y] T (a)T(B)T (N T(

x/l/lfs YL [(apg (( ));(( );.X,Y} dsdt, (3.12)
0 0

_ T@+B)T (A +p
F(@) T (BTN (1)

prgk+1 [(ap) : (bg); (ck) 75;93
Fitzmi n [[az] {(Bm); () 57

—_—

X

(
1
/f s ) FV 4k [Ei’g 5 )(bq) Asw(n)? s Y} dsdt, (3.13)
0

o — _

WL LOLD
o]+ (Bn) 5 () Y] T T@T (BT AT (1)

x/l/lfstFp a ik [(ap): (ba) 5 (ex) ”X Y} dsdt. (3.14)
0 0

F oPiatlik [(ap) i(bq),a; (ck)
+2: m ;n

! m+l nt2 ( l) (ﬁm) 7)\7( ) Bv
In all equations (3.6)—(3.14), for convenience and brevity of writing, we used the notations [ay] :=
(o), 0+ B, A+ pu], X i=axst, Y :=y(1 —s)(1 —t), and f(s,t) = s* 11 — s)P 1A1(1 — t)» 1.

Proof. The theorem statements follow easily from the definition of the Kampé de Fériet series (2.15)
if we use twice formula (2.2) for calculating the Beta function (2.2). O

Now we consider examples with concrete positive integer values for p, ¢, k, [, m, and n.

Example 3.4. The following Kampé de Fériet functions are expressed by the double integral of the
Appell and Humbert functions:

1:3:3 a ba)\b’ﬂu, _
00l at At — 5 - YT

11

(a+ﬁ A+u // /
= )F X, Y
(o) T (3 f(s,t) 1abbc )dsdt

00
1:3;3 a 2b,0[,)\;b/,,8,/l; _
F2.1;1 |:Q+IB7A+/,L c 7 C/ ’-%y =

11
:F((C)llj—ﬁ )\—I—,u //fStFQ abb ce,c; XY)dsdt
o
0 0
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F044 - a,a,a)\b,b/,ﬂ uv _
00 et BAkp: - 5 - 50 Y) T

INCIRN

1 1
)\
_ (‘”5 +” //fsth (a,d,b,b;¢; X,Y) dsdt.
0 0

2:2:2 a, b a, \; B, u;
F2:1;1 [a—l—ﬁ,)\—l-,u c Cl$y
11
)\
= OH_B +M f(s,t)Fy abc,c,XY dsdt.
F((
a)
0 0
1:3;2 a bavAaﬁvuv _
F3:0;0 |:Ca+5>)\+iu - T s DY =
11
(A
:P((‘”B +“ //fst(]f)l (a,b;¢; X, Y) dsdt.
a)
0 0
0:3;3 - tba, MU', B, s _
F3:00|:C,Oé+ﬁ,A+ILLI - ; - ;:L"y N
rx 11
:F((O‘+ﬂ “‘ //fstq>2 (b,b';¢; X,Y) dsdt.
a)
0 0
0:3;2 - ba}\ﬁ,u, _
3:0,0 CCK—F,B,A—FM - 5 — 3 wY
11
:F((O‘+5 A“L //fst<1>3 (b:c; X,Y) dsdt.
a)
0 0
133;2 a b Oév)‘;ﬁal‘b,
F2;1;1[a+6’/\+u C;Cly,y—

INCIRN

I'(a)T

11
= (a—l—ﬁ )\+M //fst\lll abc,c,XY)dsdt.
0 0

11
= (a—i_ﬁ )\—I—,u //fst\Ilg ac,c,XY)dsdt.
0 0
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4 — a,b, o, \d, B,

F0.4,3 a, 0, x, Aja, O, [
300 e o+ BN+ — 5 — Y
(

11
F(a+B8)T(A+p) // - /
= f(s,0)Z1 (a,a’,b;¢; X,Y) dsdt.
OGO MY SRR )
0:4;2 - -a, b7 «, A7ﬁ7 :Ufal, —
3:0,0 C,Oé—i-/B,)\—F/LI - ) TS Y
11
B (oz+ﬁ )\+M //
= T ()T (3 f(s,t)=2 (a,b;¢; X,Y) dsdt.
0 0
FP22 (ap) O[)‘B,uﬂ y| =
200 [(a) a4 BA s =5 =

1 1
B m+ﬁ A+u [ ; }
= T T3 /!} XY | dsdt.

Here, for convenience and brevity of writing, we wused the notations f(s,t)
s (1 — )P (1 — ) X i= sty and Y = y(1 — ) (1 —¢).

Before presenting the following Corollary, we adopt the notations o+ 5 =& and A + p = &s.

Corollary 3.2. Let conditions (3.5) be satisfied. If p =0 andl = 0, then the Kampé de Fériet function

defined in (2.15) can be represented as an integral of the product of two generalized hypergeometric
functions:

32

0: q+2;k+2 - 5(b) ( ) Bvu’ _
Falmin [(51752): Br) () 5 y]_

. TEr©) /1 /1 . L(bq);_x] - [8:));;4 st
00

0: q+1:k+1 2 (bg) , 0 (ck), Bs -
Fam [(&@) (Bm) 5 () ;“’]‘




0:q+1; k+2 - : (bq) ,Oé;(Ck) aﬁnu; :| _
Blmin &) Bm) s (m) 7Y

0: q+2;k+1 - :(bq) ,a,)\;(Ck) R :|
Poimin |(@,6) (Bn) 5 Gn) Y

0:q;k+1 - (bq); (Ck))/B;x :| _
Famin™ | (€1,6) :(Bm) s () Y

1 1
_ I'(&)T (&) . (by) @) ]
T T (@B TN () O/O/f( D)aFmt2 [(@n) LA;X} kP [(%)’H;Y} dsdt,

0:q+1;k - : (bq) , & (Ck) _
&%m(&@:@iS?;ﬂll . B
B 1 2 s q) Ck) s
‘mmm>N»Nm!!ﬂJW%“MMAX%&”kMﬁwﬂd%

where,  for convenience and brevity of writing, we used the notations f(s,t)
s N1 —s)PT AL — )T X = ast, and Y o= y(1 — s)(1 —t).
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