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Let T3 = (−π, π]3 be the three dimensional torus (Brillion zone) and let L2(T3) be the Hilbert space
of square-integrable functions defined on the torus T3. We define the two particle discrete Shrödinger
operator as wollows: $Hγ

µ(K) = H0
γ(K) + µV,(H0

γ(K)f)(p) = EγK(p)f(p), f ∈ L2(T3), where$

EγK(p) = ε(p) + γε(K − p), γ > 0 ε(p) =

3∑
i=1

(1− cos p(i)), p = (p(1), p(2), p(3)) ∈ T3, and

(V f)(p) =
1

(2π)3

∫
T3

f(q)dq, f ∈ L2(T3).

The perturbation V is positive operator of finite rank. Thus, by the well-known Weyl theorem [1] the
essential spectrum fills the following segment on the real axis:

σess(H
γ
µ(K)) = σess(H

0
γ(K)) = [min

p∈T3
EγK(p), max

p∈T3
EγK(p)],

We define the following number (using convergent integral)

1

µ0
= ν(K) =

1

(2π)3

∫
T3

dq

maxp∈T3 EγK(p)− EγK(q)

For any µ > 0 we set:

M<(µ) = {K ∈ T3 : 1− µν(K) < 0}
M=(µ) = {K ∈ T3 : 1− µν(K) = 0}
M>(µ) = {K ∈ T3 : 1− µν(K) > 0}.

The main result is the following theorem
Theorem. For any K ∈ M<(µ0) and γ 6= 1 the operator Hγ

µ0
(K) has a unique eigenvalue Eγµ0

(K)
lying outside the essential spectrum σess(Hµ0

(K)) and this eigenvalue is even real analytic in M<(µ0)
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