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Abstract. Application issues of modern methods and algorithms for optimal control of the 
process of technological system functioning in dynamic modes ensuring the efficiency of 
design of technological process of grinding for elastically deformed non-rigid shafts are 
considered in the paper. Necessary conditions for optimal control of technological system 
under consideration are investigated using the Pontryagin maximum principle. The influence of 
changes in moments of cutting forces on parameters of parts handling and transient process 
time are determined. The values of tensile forces and shaft deflections along the sections in the 
process of handling are determined. Graphic dependencies characterizing the parameters of 
processing to control technological system of grinding of non-rigid shafts based on the change 
in their elastically strained state are presented. Developed mathematical models and 
optimization of parameters in control of elastically strained state of processed parts ensure an 
increase in precision of handling and in surface quality of the part by an order of magnitude in 
comparison with previous developments. 

1. Introduction
These guidelines, written in the style of a submission to J. Phys.: Conf. Ser., show the best layout for 
your paper using Microsoft Word. If you don’t wish to use the Word template provided, please use the 
following page setup measurements. Creation of competitive products in machine-building is to the 
greatest extent ensured by the precision of its manufacturing; the most important from the point of 
view of required precision of the product is the process of parts manufacturing. An increase in 
precision requirements for manufacturing parts is explained by the tendency to improve the quality of 
modern competitive machines and by the aim to improve technical characteristics of machine, improve 
its reliability, durability, geometric and dynamic precision parameters; all that is impossible without 
consideration of dynamic properties of technological system [1].  

Circular external grinding is one of the most common processes used in the finishing stage of 
processing of shafts (stepped, crank, distributive ones) and its study is quite relevant. 

Macrogeometric indices of the surface in processes of circular cutting grinding have not been 
sufficiently studied, taking into account the creation of modern software packages for research and 
modelling of dynamic systems. The most important aspect of such studies is the possibility of 
observing transient processes in the cycle of cutting grinding and accompanying dynamic phenomena, 
which makes it possible to detect conditions for eliminating or reducing their negative influence on the 
quality of processed surface. 
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Control of grinding of low-rigidity shafts processing allows, with corresponding mathematical 
model, to increase the precision of dimensions and shapes of processed products, to improve technical 
and economic parameters of processing and to improve the reliability of normal operation of 
technological system (TS). Therefore, one of the primary tasks is to develop a mathematical 
description of TS, which functions in dynamic regimes. 

2. Construction of kinematic scheme and dynamic model
The most common is the grinding of external cylindrical surfaces, which is most often done on 
circular grinding machines. 

The scheme of this grinding is shown in Figure 1: here, the grinding wheel 1 rotates at high speed, 
and processed shaft 2 rotates at a speed 60-100 times less than the speed of the grinding wheel [2-4]. 

Figure 1. Kinematic scheme of circular external 
grinding: 1– grinding wheel; 2 – processed shaft. 

Figure 2. Circular grinding machine: 1– 
processed shaft; 2 – grinding wheel; 3 – grinding 
head; 4 – grinding machine bed. 

For modelling the process of forming the macro relief of a grinding part, it is necessary to have a 
model of a circular grinding machine with a cutting and an external action in the form of rough surface 
of the part. The grinding machine is shown in Figure 2. 

3. Development of mathematical model and solution of the problem of optimal control of the
process of parts grinding 
To achieve the goal, a mathematical model of technological system (TS) of grinding-polishing process 
for handling the parts of low rigidity is built using the Lagrange equation of the second kind [5-7]. 
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where  1j , 2j , 3j  – inertial moments of rotating mass TS, N⋅m⋅s2; 321 ,, jjj   – angular accelerations of 
TS rotating mass in the processing, s-2; 321 ,, jjj   – angular rates of TS rotating mass in the processing, 
s-1; 21 ,jj  – angular displacements of TS rotating mass in the processing, rad; bs, bс – coefficients of 
viscous resistance of processed shaft and machine bed, N⋅m⋅s/rad; сs , сc – rigidity coefficients of 
processed shaft and machine bed, N⋅m/rad; 22jjМ sh = , N⋅m; kkf ; krf – coefficients of kinetic friction 
and rolling friction; cc xx  ,  – displacement and acceleration of grinding machine bed; Мd, Мg – driving 
moments of the processed shaft and the grinding wheel, N⋅m; rsh – radius of shaft, m. 
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The cutting force in the process of circular grinding can be divided into three components: 
tangential Рz, radial Py  and axial Рx. [8]. 

There are similar empirical formulas to determine the forces Py and Px. However, to simplify and 
accelerate the calculations, it is recommended to take the values of forces Py and Px according to the 
following relations: 

Py=(0.25-.0.5) · Pz,    Px=(0.1-.0.25) · Pz,   
,N 53.1774.46375.0375.0 =⋅=⋅= zy РР

,N 18.874.46175.0175.0 =⋅=⋅== zсх РРР  
At constructing models of elastic lines of parts of low rigidity, and processing them in elastically 

strained state, bending moments along X axis are taken as the most significant factors, since elastic 
strains along this axis exert a dominant influence on the errors of shape in longitudinal direction. 

For required rigidity, corresponding moment of inertia of processed shaft is determined by solving 
the conjugate system of the Pontryagin maximum principle. 

At modeling it is necessary to consider the interrelation of parameters providing real results on 
precision of processing that in turn, leads to the solution of a problem of optimum control of 
technological process. 

The main purpose of control of operation process of TS is to determine the best transient processes 
so that the energy expended during the transient process be minimal, i.e., it is required to select such a 
control u(t), which translates the parameters of motion of a grinding wheel and machined shaft into the 
given value at minimum time. Then, periodic speed performance in the form of minimization of the 
functional is taken as the main criterion for evaluating the process of functioning [9,10] 
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where f(…) – continuously differentiable with its derivatives; u(t)  – sectional continuous function on 
an interval [t0,T]. 

To investigate necessary conditions for optimal control of considered TS, the Pontryagin maximum 
principle is used [9,10]. 

To formulate the maximum principle, the Hamilton-Pontryagin function for TS is introduced 
〉〈+−== utuftuH i ,),,(),,,,( 0

0 ψjψψj  (7) 
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with limited control  1.u ≤
To solve the problem under consideration the following necessary condition should be satisfied: 

)),(,,),((max),,),(),(( 00 ψψjψψj ttutHttutH iiUuii
∈

= .  (9) 

To define optimal control on the basis of (7), the following function is formed as 
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So, if  0 1,f ≡  so 0 0( , ( ), ( ))J u t t T tφ φ = − . In this case the task (2)–(6) is called the problem of 

operating speed. 
The object under consideration is a stationary system and problem (4) means that  and f U  do not 

depend explicitly on time, i.e. 
( , , ) ( , ),      ( )f t y u f y u U t U= = . (11) 

If stationary problem (4), (11) has an optimal control u(t) and an optimal trajectory )(0 tj , then there
exists a nonzero vector of conjugate variables  satisfying conditions (9), 
that is, the maximum condition is satisfied (7) 

0)(0 ≤= consttψ .                                                 (12) 
So as the conjugate system (8) is congeneric in relation to iψ , constant in an equation (9) can be 

chosen liberally so that 
Tt0         1)(0 ≤≤−=tψ  .                 (13) 

Then the boundary value problem of the maximum principle is written in the form 
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We compose the Hamilton-Pontryagin function, which has the form 
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Hence it is clear that the condition (9) separates the function 2 2,   0u signψ ψ= ≠ . The boundary 
problem (10), (14) consists of  

di utufH )(2
0 ψ+−= .      (16) 

In this case 
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is, the control ui(t) can have one switching point only. 
To determine auxiliary functions (8), a conjugate system with a variation of design parameters bi, 

с i,   ji is studied by a numerical method. 
Systems (1), (8), (14) are solved using numerical Runge-Kutta method [11]. The control uk(t), 

which delivers the maximum of function (9), is defined in the region (17). The processing of results of 
the solution of system (8) has shown that the change in moments of inertia and elastic-dissipative 
forces dramatically changes the function of the variables 1ψ , 1ψ , 2ψ , 2ψ , that is, the motion of 
processed shaft. 

Therefore, to increase the precision of dimensions and shapes of shafts to be processed, it is 
necessary to determine variables of the conjugate system that ensure normal functioning of TS. 

4. Discussion of experimental results
Results of numerical solutions of system (1), presented in table 1 and on figures. 3, 4 make it possible 
to determine optimum values of parameters of non-rigid shafts processing. 

1 2( ( ),   ( )),    ( ) nt t t Rψ ψ ψ ∈
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Table 1. Values of parameters of processed shaft functioning

Т, 
s 

,1j  
s-1

1j
s-2 

dМ , 
Nm 

,2j  
s-1 

2j , 
s-2

shМ , 
Nm 

,3j  
s-1

,3j  
s-2

gМ , 
Nm 

nsh, 
rev/min 

ng, 
rev/min 

0 0 40.47 22.97 0 -60.76 -0.6 0 117.22 66.93 0 0 
0.1 3.87 38.33 21.75 3.87 60.49 0.6 11.65 118.33 67.57 36.99 111.34 
0.2 7.74 38.33 21.75 7.74 60.48 0.6 23.3 118.33 67.57 73.98 222.68 
0.3 11.61 38.33 21.75 11.61 60.52 0.6 34.96 118.33 67.57 110.97 333.98 
0.4 15.48 38.33 21.75 15.48 60.48 0.6 46.6 118.33 67.57 147.97 445.15 
0.5 19.36 38.33 21.75 19.36 60.38 0.6 58.25 118.33 67.57 184.96 556.52 
0.6 23.23 38.33 21.75 23.23 60.38 0.6 69.2 118.33 67.57 221.95 668.01 
0.7 27.1 38.33 21.75 27.1 60.38 0.6 81.6 118.33 67.57 258.95 779.54 
0.8 30.97 38.33 21.75 30.97 60.38 0.6 93.26 118.33 67.57 295.94 891.06 
0.9 34.86 38.33 21.75 34.86 60.53 0.6 104.93 118.33 67.57 333.06 1002.6 
1 38.75 38.33 21.75 38.75 60.53 0.6 116.61 118.33 67.57 370.24 1114.11 

Figure 3. Graphs of the motion parameters change for the processed shaft and the grinding wheel 
in the transient process, obtained by solving (14) of the maximum principle boundary problem: 
1,5,9 - angular velocity 321 ,, jjj  , 2,6,10 - angular accelerations 321 ,, jjj   and auxiliary functions 
13- 1ψ ,14- 1ψ , 17- ,2ψ  18- 2ψ  by u(t)= +1; 3- 1j , 7- 2j  11- 3j − angular velocity,    4- ,1j  8- 2j , 12- 3j −  
angular accelerations and auxiliary functions − 15- 1ψ ,16- 1ψ , 19- ,2ψ  20- 2ψ  by  u(t)= -1. 
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Figure 4. The characterization of the changing parameters of the TS in the shaft grinding process. 

The influence of inertia moments and elastic and dissipative forces to changing of in-processing 
moving shaft were investigated. Change in the moment of inertia of headstock and tailstock of TS 
significantly affects angular velocities and accelerations of processed shaft [4,5]. To reduce the range 
of changes in angular velocities and accelerations, a variation in rigidity coefficients and viscous 
resistance of processed shaft is carried out. As rigidity coefficient increases, the coefficient of viscous 
resistance of processed shaft increases too. The amplitude of angular velocity of vibrations decreases 
significantly. This indicates that the amplitude and frequency of vibrations of angular velocities and 
accelerations of the shaft depend on the moment of inertia and elastic-dissipative forces. 

5. Determination of elastic deflections and the character of changes in shaft processing precision 
of TS functioning 
The most expedient direction of problem solution is a control of technological systems by machining 
of non-rigid parts in an elastically deformed state on the basis of scientifically grounded technological 
methods of influencing the workpiece. 

When controlling TS processing of parts of low rigidity based on the change in their elastically 
deformed state, separate force or a combination of regulated force actions are used as control actions 
aimed to compensate force factors from the cutting process: bending moments on supports; control of 
flexure-torsion forces of strain [3]. 

To evaluate the possibilities of the method and establish theoretical regularities of behaviour of the 
detail in longitudinal-transverse bending, the equation of elastic line of a non-rigid shaft is solved [6]. 

The equations of elastic line in the I and II sections have the form 
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Initial parameters are determined, given the function of the effect of lateral load [6]. 
Finally, equations of deflections along sections take the form 
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part; a is the coordinate of lateral load application. 
Based on results of numerical solutions of system (1) and design scheme, the calculations of 

deflections and precision of shaft processing are presented in the Table 2 and on Figures 5, 6. 
The results of the computational experiment are obtained for the following values of rigidity 

coefficients cc=2398826.26, viscous resistance bс =615.32, mc=560 kg, Md=66.853, kkf =0.8, krf 
=0.004 and ∆xc=0.0006148. 

Table 2. Results of calculation of deflections and precision of shaft processing 
Т, s cx , s-1 

cx , s-2 Рс, N 0y , μm Iy , μm IIy , μm defy , μm 

0 0 0.01 6.08 -130 3200 3200 3000 
0.1 0.001 0.0094

 
5.3 1.56 -48 -48 -46.6 

0.2 0.0019 0.0073
 

4.12 1.51 -47 -47 -45.4 
0.3 0.0025

 
0.0041

 
2.318 1.52 -47 -47 -45.6 

0.4 0.0029
 

0.0016
 

0.093 1.5 -46,7 -46.7 -45.2 
0.5 0.0029

 
-0.004 -2.28 1.65 -50 -50 -48.8 

0.6 0.0026 –
 

-4.54 1.65 -50 -50 -48.8 
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0.8 0.0011 –
 

-7.67 1.47 -46 -46 -44.5 
0.9 0.0001

 
–
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1 –
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Figure 5.The characterization of the changing 
parameters of the machine bed motion in the 
shaft grinding process. 

Figure 6.The characterization of the changing 
parameters of the machine bed motion in the shaft 
grinding process. 
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As seen from the graph, the character of changes in velocity, acceleration, displacement 
corresponds to the character of cutting force changing in along the processed line. 

An increase in rigidity due to stretching leads to a decrease in elastic deformations of processed 
shaft and decrease in transient process; as a result the precision of the shape and quality of processed 
surface increase. 

6. Conclusion 
Thus, for given values of moments of inertia of rotating masses and rigidity coefficients and viscous 
resistance of processed shaft, transient processes for processed shaft are obtained by solving the 
boundary value problem based on the Pontryagin maximum principle. The variation of in-processing 
shaft coefficients of rigidity, viscous resistance and stretching forces were performed to reduce the 
range of angular velocity and accelerations change. Rigidity increase at the expense of stretching led 
to reduction of in-processing shaft deformation and reduction of transition process. 

Mathematical models have been developed to control the precision of processing a shaft of low 
rigidity, and optimum parameters for an elastically deformed state of a part have been obtained. The 
regularities of changes in elastic axis of the shaft under the action of tensile forces and bending 
moments are established. Values of tensile forces, bending moments and deflections of the shaft along 
sections are determined under processing. As a result of research, the precision of processing is 
increased by an order of magnitude in comparison with previous developments. 
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