Urban Water Management

Within the module: Ecology and Water Resources Summer 2012

April 24 – May 16, 2012

Institut für Wasserwirtschaft, Hydrologie und Iandwirtschaftlichen Wasserbau Leibniz Universität Hannover Part 5

Prof. Dr.-Ing. Hans-Reinhard Verworn

Overview

Contents today: Drainage (continued)

Storm water management

- best management practices
- source control
- real time control

Traditional: Stormwater disposal

- ⇐ Hydraulic stress and pollution for receiving waters
- ⇐ Alleviation: "end of the pipe" solutions

Today : Stormwater management

- Best management practices
- Source control
- Back towards the natural water cycle
 by increasing infiltration and evaporation
- ⇐ Reduction of total runoff as well as peak flow
- ⇐ Exploit infiltration potential as far as possible

Runoff from natural and impervious areas

Surface infiltration

Pervious paving: stones and wide joints

Infiltration pond

Swale infiltration

Swale infiltration

The swale and trench concept

٠

Swale and trench

Infiltration shaft

Constructed wetland

Surface discharge elements

Design of surface discharge

Infiltration swale

Infiltration swale with design elements

Stormwater management Rainwater harvesting

Industrial estate: flooded swale

Industrial estate: roof discharge via pipe bridges

Infiltration and storage structures

• required volume

$$V_{s,imp} = \left(r_{D,f} - (q_{dr} + q_{perc})\right) \cdot D \cdot 0,06 \cdot x_{corr}$$

V _{s,imp}	= specific volume related to the impervious area r
۲ _{D,f}	= rainfall rate of defined duration D and frequency f [l/s*ha)]
Q <i>dr</i>	= throttle runoff rate [l/s*ha)]
q _{perc}	= percolation rate [l/s*ha)]
D	= duration [min]
X _{corr}	correction factor (safety, flow time, throttle runoff variation)

- Rainfall data from the past are used to assess the present performance and the design of future systems
- Does rainfall behaviour change with time ?
- ▶ Do we have sufficient data to answer that question ?
 - ⇐ Generally no …..
- ▶ ... but:
 - Emschergenossenschaft/Lippeverband in Germany have operated rain gauges since 1930
 - 40 to 70 years of recorded rain data for 27 stations are available

Investigation of I-D-F relations

- \Leftrightarrow sections of 10 years
- ⇐ no overlapping sections
- ⇐ analyses for groups instead of singular stations
- ⇐ durations from 15 min to 24 hours
- \Leftrightarrow samples of 7 (5) values

Statistical Rainfall Depths from analysing 10-year sections Return period: T = 20 a

