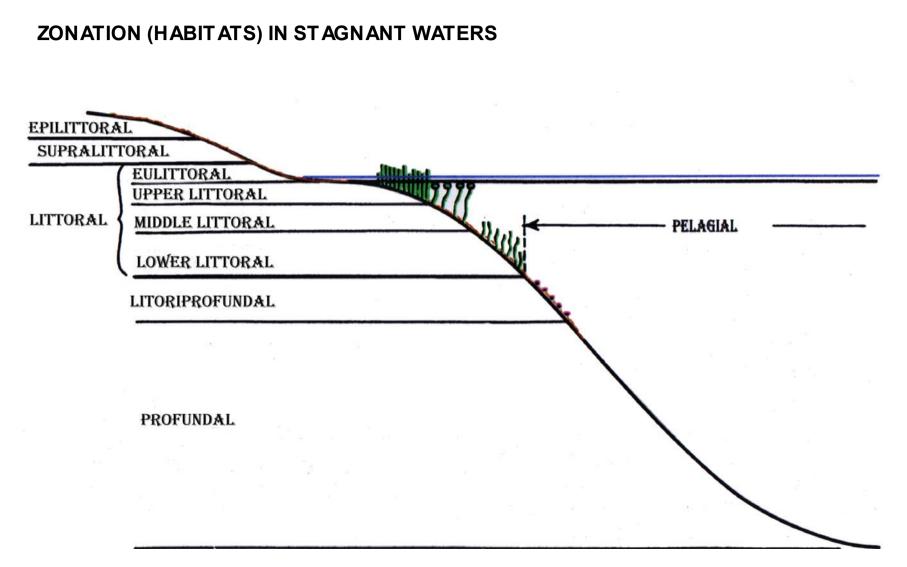
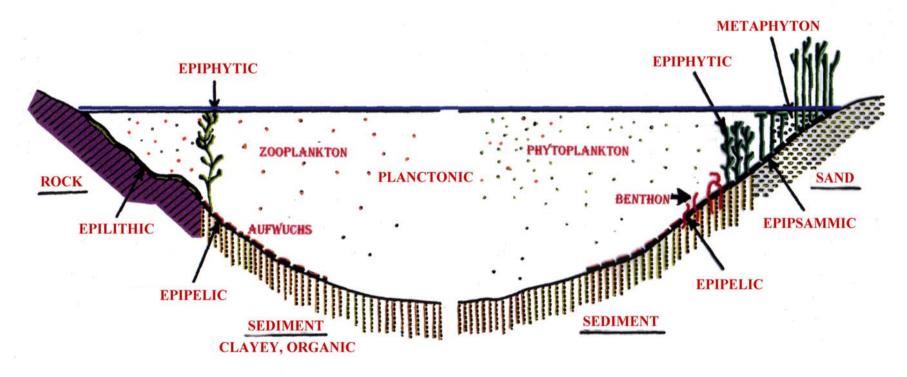
# **Living Conditions**

Conditions for aquatic organisms:


- High density of medium (water)
- Low salt medium (hypertension of aquatic organisms)
- High solvent capacity of medium for an organic and organic matters
- Vertical gradients of different factors

Water is more dense than air (775 times); specific weight of organisms is about 1.05, hence water is able to take a load.


The whole water column is populated.

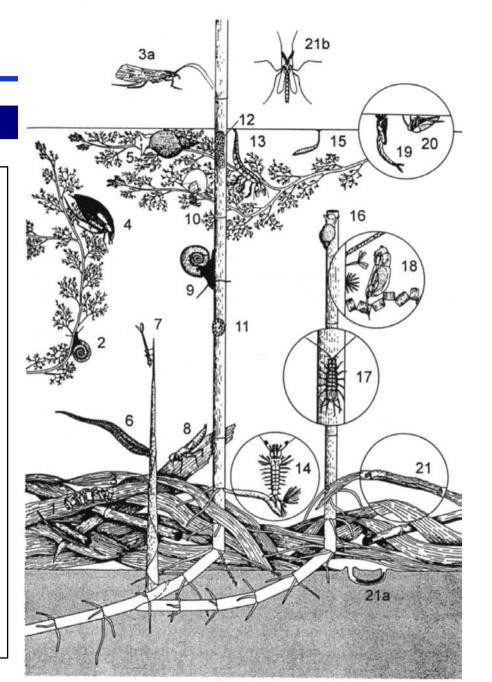
Freshwater organisms are hypertonic, electrolyte concentration is <u>higher</u> and <u>different</u> from freshwater medium.

Freshwater organisms are able to osmoregulate and to regulate the ionic composition of their body fluids.

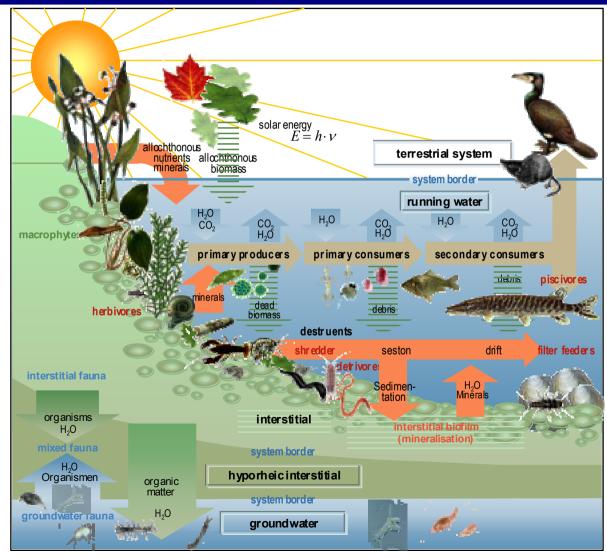


### HABITATS AND COMMUNITIES IN STAGNANT WATERS




# **AQUATIC COMMUNITIES**

| Benthos                                | Plankton         | Nekton        |
|----------------------------------------|------------------|---------------|
| Bacteriobenthos                        | Bacterioplankton |               |
| Microphytobenthos<br>Macrophytobenthos | Phytoplankton    |               |
| Microzoobenthos<br>Macrozoobenthos     | Zooplankton      | Pisces / Fish |


#### **AQUATIC COMMUNITIES**

#### Aquatic Community in Typha spp.:

- 1 = Lumbriculus (worm)
- 2 = Planorbidae (snail)
- 3 = Trichoptera, *Limnephilus*
- 3a = adult Trichoptera, *Limnephilus*
- 4 = Hydrous piceus (beetle)
- 5 = Lymnaea palustris (snail)
- 6 = Hirudo medicinalis (leech)
- 7 = Zygoptera (dragonfly)
- 8 = Anisoptera (dragonfly)
- 9 = Planorbis spec. (snail)
- 10 = Argyroneta aquatica (water spider)
- 11 = Eggs from Planorbidae
- 12 = Eggs from Lymnaeidae
- 13 = Dytiscus marginalis (great diving beetle)
- 14 = Mansonia spec. (gnat)
- 15 = Stratiomys spec. (fly)
- 16 = Lymnaea peregra (snail)
- 17 = Asellus aquaticus (waterlouse)
- 18 = Algae with rotifer;
- 19 = Chironomidae (non-biting midge)
- 20 = *Notonecta* spec. (water boatman, backswimmer)
- 21 = Fam. Chironomidae;
- 21a = larvae
- 21b = adult
- (from Löffler 1974)



#### RUNNING WATERS: TROPHIC LEVELS AND MATERIAL FLOW



#### **RUNNING WATERS: HABITATS AND COMMUNITIES**

Pelagial (flowing water body):

- Transport of rich in species plankton (allochthonous !)
- Phytoplankton needs slow flow velocity, light, nutrients
- Fish migrate through waterbody, need breeding and hiding places

Benthal (flowing water body):

- Organisms are bound to solid subtrates to resist the current
- Organisms settle on, under and between stones, pebbles, gravel, wood etc.
  Interstitial:
- Breeding place for most organisms
- Shelter for organisms in times of abiotic pessima

### **RUNNING WATERS: FISH ZONATION (EUROPE)**

| <u>Krenal</u>    | OUTFLOW AREA (SPRINGS)                                      | FIRE SALAMANDER REGION |
|------------------|-------------------------------------------------------------|------------------------|
| <u>Rhithral</u>  | UPPER TROUT REGION<br>LOWER TROUT REGION<br>GRAYLING REGION | SALMONID REGION        |
| <u>Potamal</u>   | BARBEL REGION<br>CARP BREAM REGION                          | CYPRINID REGION        |
| <u>Estuaries</u> | RUFF-FLOUNDER-REGION                                        | RIVER OUTLET REGION    |

Zonations are based on (worldwide):

- the annual temperature amplitude
- morphological structure of the riverbed

### **RUNNING WATERS: FISH ZONATION (EUROPE)**

| <u>Krenal</u>   | outflow area (springs)                                              |                      |  |
|-----------------|---------------------------------------------------------------------|----------------------|--|
| <u>Rhithral</u> | area of (mountain- ) stream (= salmonid region), max. temp. < 20 °C |                      |  |
|                 | Epirhithral                                                         | upper trout region   |  |
|                 | Metarhithral                                                        | lower trout region   |  |
|                 | Hyporhithral                                                        | grayling region      |  |
| <u>Potamal</u>  | area of lowland river, max. temp. > 20 °C (sometimes)               |                      |  |
|                 | Epipotamal                                                          | barbel region        |  |
|                 | Metapotamal                                                         | carp bream region    |  |
|                 | Hypopotamal                                                         | ruff-flounder-region |  |

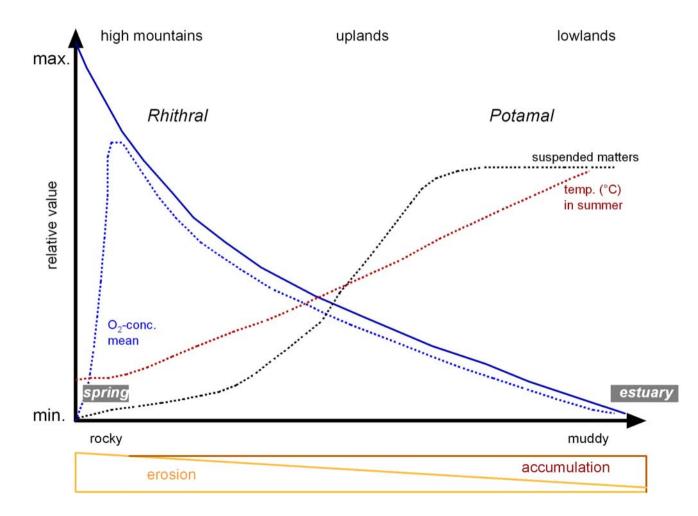
Limnological terms (biotope – coenosis - ecosystem)

- Kren<u>al</u> Kren<u>on</u> Kreno<u>coen</u>
- Rhithral Rhithron Rhithrocoen
- Potamal Potamon Potamocoen

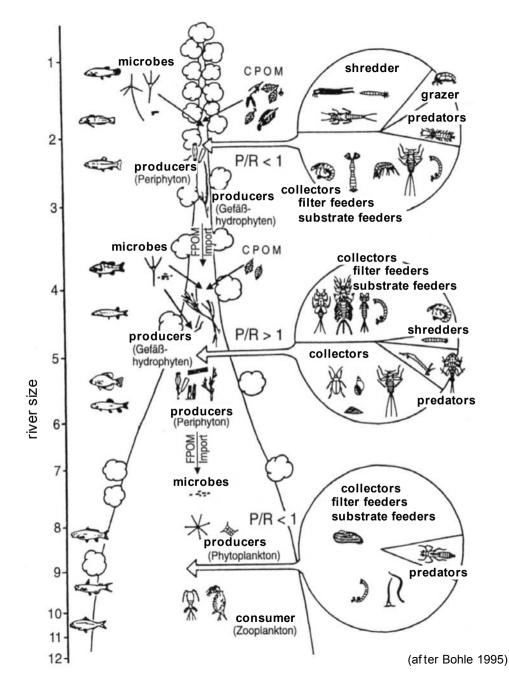
## **RUNNING WATERS: ZONATION**

Extension of running waters zonation is dependant on

Altitude and Latitude


In similar altitude rhithral areas decrease from polar to tropical regions, potamal areas increase.

<u>Water temperature</u> seems to be main factor, followed by <u>morphological</u> <u>structure</u> of the riverbed and <u>hydraulic conditions</u>.


Rhithral zone is populated with species of similar habitus and life-cycles worldwide. Adaptation to abiotic milieu was convergent.

Coenosis of the Rhithral is an «<u>Isocoenosis</u>».

## ABIOTIC FACTORS IN FLOW DIRECTION OF A RIVER



**RIVER CONTINUUM CONCEPT** 



**BIOGENOUS TURNOVER OF SUBSTANCIES (1)** 

**Functional groups** 

- <u>Producers</u>: sythesize biomass from anorganic compounds by fixing radiation energy biochemically = PRIMARY NEOGENESIS OF ORGANIC MATTER
- <u>Consumers</u>: generate energy by CONVERSION OF (mostly living) PARTICULATE ORGANIC MATTER (POM)
- <u>Destruents</u>: generate energy by destruction of dead organic matter to anorganic compounds = CONVERSION of organic matter (mineralisation)

**Primary production** 

- Measure for trophic level (intensity of primary production = trophic level)
- Main producers are BENTHIC (Phytobenthos) and PLANKTONIC ALGAE (Phytoplankton), in littoral zones MACROPHYTES (0 – 8 m depth)

## **BIOGENOUS TURNOVER OF SUBSTANCIES (2)**

Temporal distribution of primary production depends on

- nutrient concentration,
- water temperature
- thermal stratification
- thickness of euphotic zone
- grazing intensity (zooplankton)

Spatial distribution of primary production depends on

- distribution of light energy
- floatation (locomotion) of algae

**BIOGENOUS TURNOVER OF SUBSTANCIES (3)** 

Consumption

- herbivorous primary consumers
- carnivorous secondary consumers

Feeding types

- Filter feeder (catch suspended particles, bacteria, algae, detritus)
- Grazer (feed on "Aufwuchs", biofilms by scraping, rasping, scratching)
- Schredder (decomposing, dissecting fallen leaves, detritus)
- Sediment feeder (consuming detritus, bacteria, algae, organic particles)