



## Lecture 18

## Sludge treatment

Prof. Dr.-Ing. K.-H. Rosenwinkel, Sanitary Engineering, SS 12

#### **Conventional wastewater treatment plant configuration**





[DEX Summer School, 2011]

## **Types of sludge**



| Types of sludge                   | Sewage sludge                                       | Water-containing and seperable substances from wastewater (except screenings, sievings and sands)                                                                                   |  |
|-----------------------------------|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| according to their<br>source      | Preliminary sludge                                  | Sludge, that is separated solely from the water which runs into the sewage plant during the first part of the cleaning process (mechanical wastewater treatment) by physical method |  |
|                                   | Secondary sludge                                    | Sludge, that is separated during the second part of the cleaning process (biological wastewater treatment ), e.g. excess sludge, trick filter sludge                                |  |
|                                   | Tertiary sludge                                     | Sludge from the third step of the cleaning process (e.g. precipitation, fining pond)                                                                                                |  |
|                                   | Mixed sludge                                        | Mixture of primary and secondary sludge, the common form of occurrence of sludge in the local sewage plants                                                                         |  |
| according to their<br>development | Primary sludge                                      | Sludge, that is removed from the primary sedimentation tank. This sludge could retain different sludge types besides the primary sludge, due to the used technique                  |  |
|                                   | Excess sludge                                       | Increase of active sludge, that develops during the biological proces<br>which has to be removed                                                                                    |  |
|                                   | Trickling filter sludge                             | Increase of biological sludge, that develops during trickling filter process, is normally removed during the final purification                                                     |  |
|                                   | Precipitation sludge                                | Sludge from the precipitation and/or flocculation                                                                                                                                   |  |
| according to their<br>stability   | Raw sludge                                          | Untreated sludge                                                                                                                                                                    |  |
|                                   | Stabilized sludge                                   | Sludge, whose treatment achieves at least one of the two main aims of stabilization (advanced reduction of odorous substances and organic solid sludge material)                    |  |
|                                   | Digested sludge<br>(anaerobic stabilized<br>sludge) | Sludge, that is stabilized through digestion to the technical digestion limit                                                                                                       |  |



#### **Primary sludge**

1. According to Imhoff:

Specific primary sludge =  $45 \text{ g DS}/(I \cdot d)$ 

DS = Dry solids [kg/(I·d)]: Mass of dried solids in sludge I = Inhabitant

#### 2. According to ATV A131:

The amount of primary sludge depends on the detention time in the primary treatment.



#### **Excess sludge after the primary treatment (without precipitation)**

1. According to Imhoff:

 $\mathsf{ES}_{\mathsf{C}} = \underline{25 \text{ g } \mathsf{DS}/(\mathrm{I} \cdot \mathrm{d})}$ 

#### 2. According to ATV A131:

ES, according to the following equation and table, depends on:

- $X_{DS}/C_{BOD}$  (small  $X_{DS} \rightarrow$  small ES) • Sludge age (high SRT  $\rightarrow$  small ES)
- Temperature  $(10 \degree C \text{ higher} \rightarrow 10\% \text{ less ES})$

$$\mathsf{ESc} = \underbrace{0.75}_{\substack{\text{detached}\\\text{growth}}} + \underbrace{0.6 \cdot \frac{X_{\text{DS}}}{C_{\text{BOD}}}}_{\text{from DS}} - \underbrace{\frac{(1-0.2) \cdot 0.17 \cdot 0.75 \cdot \text{SRT} \cdot \text{F}_{\text{T}}}{1+0.17 \cdot \text{SRT} \cdot \text{F}_{\text{T}}}}_{\text{dying}} \left[ \frac{\text{kg DS}}{\text{kg BOD}} \right]$$

with:  $F_T = 1.072^{(T-15)}$ 

Prof. Dr.-Ing. K.-H. Rosenwinkel, Sanitary Engineering, SS 12



## Precipitation sludge (simultaneous precipitation with preliminary treatment; Excess sludge production from phosphorus removal) ES<sub>P</sub>

1. According to Imhoff:

 $\mathsf{ES}_{\mathsf{P}} = \underline{15 \text{ g } \mathsf{DS}/(I \cdot \mathsf{d})}$ 

2. According to ATV A131:

specific  $ES_P$  depends on:

- amount of P that is necessary for cytogenesis is about 25% (it doesn't need to be precipitated)
- precipitant (Fe, Al, sodium aluminate, etc.)
  e.g. amount of sludge = 2.5 g DS/g Fe
- β-value = mostly 1.5 [mol Fe /mol P]

$$\mathsf{ESP} = (1 - 0.25) \cdot \left( 1.6 \frac{\mathsf{gP}}{\mathsf{I} \cdot \mathsf{d}} \cdot 1.5 \frac{\mathsf{molFe}}{\mathsf{molP}} \cdot \frac{56 \frac{\mathsf{gFe}}{\mathsf{molFe}}}{31 \frac{\mathsf{gP}}{\mathsf{molP}}} \cdot 2,5 \frac{\mathsf{gDS}}{\mathsf{gFe}} \right) \approx 11.0 \left[ \frac{\mathsf{gDS}}{\mathsf{I} \cdot \mathsf{d}} \right]$$



## Total amount of raw sludge (with preliminary and precipitation treatments)

**1. According to Imhoff:** 

specific RS =  $45 + 25 + 15 = \frac{85 \text{ g DS}}{(\text{I} \cdot \text{d})}$ 

#### 2. According to ATV A131 based on the example of:

specific RS =  $45 + 32 + 11 = \frac{88 \text{ g DS}}{(\text{I} \cdot \text{d})}$ 



## Total amount of stabilized sludge = amount of sludge to be depolluted

#### Raw sludge consists of:

- ca. 70% organic material
- ca. 30% mineral material

The organic percentage can be reduced by stabilization (e.g. digestion). The reduction mainly depends on the detention time and temperature. These are about 50% of the organic share, the mineral portion remains the same.

Total amount of stabilized sludge per inhabitant per day:

 $= 88 \text{ g DS/(I \cdot d)} \cdot ((0.3 \cdot 1) + (0.7 \cdot 0.5)) = 57 \text{ g DS/(I \cdot d)}$ 



Excess (surplus) sludge without primary treatment (without precipitation)

**1. According to Imhoff:** 

 $ES_{C} = 70 - 80 \text{ g } DS/(I \cdot d)$ 

#### 2. according to ATV A131

e.g.:

$$X_{DS}/C_{BOD} = 70 \text{ g}/60 \text{ g}; \text{ SRT} = 10 \text{ d}; \text{ t} = 10^{\circ} \text{ C}$$

$$ES_{C,BOD} = 1.07 \text{ kg DS/kg BOD} \cdot 60 \text{ g} = \frac{64 \text{ g DS/(I \cdot d)}}{60 \text{ g}}$$

## **Chemical consistence of sludge**



| Parameter                                  | Pe     | rcentage             |
|--------------------------------------------|--------|----------------------|
| Carbon (TOC)                               | 43     | % TR                 |
| Oxygen                                     | 22-25  | % TR                 |
| <b>Nitrogen</b>                            | 4-10   | % TR                 |
| Hydrogen<br>Aluminium<br><b>Phosphorus</b> | 6<br>2 | % TR<br>% TR<br>% TR |
| Sulfur                                     | 1      | % TR                 |
| Potassium                                  | 6200   | mg/kg TR             |
| Sodium                                     | 1700   | mg/kg TR             |
| Calcium                                    | 23000  | mg/kg TR             |
| Magnesia                                   | 3900   | mg/kg TR             |

### Main tasks of sludge treatment



1. Thickening and stabilisation

2. Hygienisation

3. Dewatering

4. Sludge disposal

## **Sludge treatment and disposal options**





<sup>[</sup>DEX Summer School, 2011]

## **Sludge treatment methods**



According to TA Municipal Waste important combinations and methods for the treatment, the physical exploitation or other types of disposal (environment-friendly disposal = landfill) of sewage sludge remain, general flow sheet.

#### **Classification of biological stabilisation procedures**



|                        |                                                  | Aerobic stabilisation                                                       |                     | Anaerobic stabilisation |                                                                  |                         |              |
|------------------------|--------------------------------------------------|-----------------------------------------------------------------------------|---------------------|-------------------------|------------------------------------------------------------------|-------------------------|--------------|
| Temperature range      |                                                  | psychrophilic                                                               | mesophilic          | thermophilic            | psychrophilic                                                    | mesophilic              | thermophilic |
|                        |                                                  | 15 - 20°C                                                                   | 30 - 38° C          | 50 - 55°C               | 15 - 20°C                                                        | 30 - 38° C              | 50 - 55°C    |
| Constructive<br>design | with<br>wastewater<br>treatment                  | simultaneous<br>in the sludge<br>activation tank<br>(biological<br>reactor) |                     |                         | constructional<br>combined with<br>settling tank<br>Emscher-well |                         |              |
|                        | separated<br>from the<br>wastewater<br>treatment | tank without<br>heat insulation                                             | heat-insulated tank |                         | Open or<br>closed tanks                                          | Closed and heated tanks |              |

## Anaerobic sludge stabilization (sludge digestion)



Leibniz Universität Hannover

## **Sludge digestion**



#### **Digester requirements:**

- Constant and careful intermixing of the digester's content (acetogenic and methanogenic bacteria have to live close together for a maximum metabolic rate) avoidance of hydraulic dying areas (risk of sedimentation!).
- Digesters have to be heated because normally they are working with an operating temperature of about 33 - 37°C. The radiation of heat is limited by a proportion of surface and volume (e.g. module of an egg) and by an adequate heat insulation.

## **Sludge digestion**



#### **Digester requirements:**

- The raw sludge inflow should be as constant as possible by simultaneous admixture (inoculation) of digesting sludge.
- Good possibility of destruction and removal of top scum
- Collection and utilization of sewage gas

### **Egg-shaped anaerobic digester**





[Wastewater Engineering - Treatment and Reuse; Metcalf & Eddy]

## **Sludge thickening**



Decrease the water content of the sludge withdrawn from the treatment plant from 98 - 99.5% to 92 - 96% in order to reduce the flow to be treated

#### **Thickening technology:**

- gravity thickeners (similar to primary sedimentation)
- mechanical thickening (drum thickener, belt thickener, thickening centrifuges)

Water from thickening is called supernatant.

#### Sludge thickening ability depends on:

- the composition of the wastewater
- the available process engineering of the sewage treatment plant
- the operating mode of the sewage treatment plant
- the type of sludge

## **Types of sluge liquor**





## Mode of operation and energy demand of dewatering steps



| Steps of dewatering                                | Separation<br>from               | Achievable<br>TR-content | Energy demand<br>in kWh per m <sup>3</sup> separated sludge<br>liquor |
|----------------------------------------------------|----------------------------------|--------------------------|-----------------------------------------------------------------------|
| Thickening                                         | interspace<br>water              | 2 - 10%                  | 0.001 to 0.01                                                         |
| <b>Dewatering</b><br>(mostly with<br>conditioning) | adsorbed and capillary water     | up to 50%                | 1 to 10                                                               |
| Drying                                             | inner and<br>adsorption<br>water | up to 99%                | ca. 1.000                                                             |

#### Sludge volume



$$V = V_0 \cdot \frac{[100 \cdot S_w + WC(S_s - S_w)](100 - WC_0)}{[100 \cdot S_w + WC_0(S_s - S_w)](100 - WC)}$$

simplified: 
$$V = V_0 \cdot \frac{DS_0}{DS}$$

#### With:

- V<sub>0</sub> Volume of initial sludge [m<sup>3</sup>]
- WC<sub>0</sub> Water content of initial sludge[%]
- DS<sub>0</sub> dry solid matter in the initial sludge (dry residue) [%]
- V, WC alternatively DR equivalent in the dehydrated sludge
- S<sub>w</sub>, S<sub>s</sub> Density of water, Density of sludge [g/cm<sup>3</sup>]

### Weight and volume decrease



## **Types of sludge thickening**



#### **1. Gravity thickener**

#### Advantages:

- low operating costs
- low operation sensitivity
- storage function
- conditioning is not necessary

## **Types of sludge thickening**



#### 2. Mechanical thickener

- Centrifuge
- Gravity-Belt
- Rotary-Drum

#### Advantages:

- higher thickening rate
- less space requirement

## **Types of sludge thickening**



#### 3. Floating thickening

- Advantageous with industrial sludge with high content of floating substances
- Rarely found in conventional wastewater plants due to its complexity

### **Gravity thickener**





### **Mechanical dewatering systems**



| Type of dewatering | Operating mode | Concentrator         |
|--------------------|----------------|----------------------|
| Filtration         | discontinuous  | chamber filter press |
| Fillration         | continuous     | belt filter press    |
| Sedimentation      | continuous     | decanter/centrifuge  |

#### **Chamber filter press**



### **Gravity-belt thickener**





## Centrifuge



## Sludge utilization/recycling and disposal



#### **1. Sewage sludge utilization in agriculture**

- Current percentage about 30% / Lower Saxony 70% (2002)
- Problem: Low acceptance because of heavy metals, endocrine substances, BSE, etc.
- Conclusion : Can be recommended if the pollutant concentration is low. The content of harmful substances should be reduced further more by the control of the indirect discharger.

## Sludge utilization/recycling and disposal



#### 2. Depositing / landfilling

- Current percentage about 60%
- Problem: The organic part of the deposited material mustn't be higher than 5% according to TA municipal waste since 2005.
- Conclusion: The conventional form of depositing/landfilling is no longer allowed, the sludge has to be treated thermally before.

## Sludge utilization/recycling and disposal



#### 3. Incineration

- Current percentage about 10%
- Problem: Low acceptance because of air contamination (almost solved technically) partial problems with disposal of rest material
- Conclusion: Higher importance in the future
- New ways for disposal of cinder and ashes are presently analyzed.