Groundwater Hydraulics

Institute for Fluid Mechanics and Environmental Physics in Civil Engineering, Universität Hannover

Steady state well flow

Dupuit-Thiem (1906)

Dupuit-Thiem (1906)

Observation of the piezometric head at to observation wells at distance $r_1 \mbox{ and } r_2$

$$\frac{-Q_w}{2\pi T}\ln(r_1) = h(r_1) + C_1$$
$$\frac{-Q_w}{2\pi T}\ln(r_2) = h(r_2) + C_1$$

Taking the difference gives

eibniz

$$h(r_1) - h(r_2) = \frac{Q_w}{2\pi T} \ln\left(\frac{r_2}{r_1}\right)$$

Can be used to determine the transmissivity of an aquifer.

Steady state flow towards a well Unconfined aquifer

Steady state flow towards a well Unconfined aquifer

Without recharge, similar to confined:

_eibniz

lniversität lannover

$$Q(r) = Q_W = -\pi r k_f \frac{\partial h^2}{\partial r}$$
$$h^2 = -\frac{Q_W}{\pi k_f} \ln(r) + C_1$$
Difference:
$$h_1^2 - h_2^2 = \frac{Q_W}{\pi k_f} \ln\left(\frac{r_2}{r_1}\right)$$

Unconfined aquifer with recharge:

 $Q(r) = Q_W + Q_N$

• Compare head squared at two distances

$$h_1^2 - h_2^2 = \frac{Q_w}{\pi K} \ln\left(\frac{r_2}{r_1}\right) + \frac{N}{2K} \left(r_2^2 - r_1^2\right)$$

- Logarithmic contribution from well
- Quadratic contribution from recharge
- Pumping well + recharge: capture zone
- No recharge and only one observation well: Radius of influence

$$h_0^2 - h_1^2 = \frac{Q_w}{\pi K} (\ln(r_1) - \ln(R))$$

Maximum well capacity in an unconfined aquifer

At the well: large drawdown of the piezometric head

Dupuit assumption does no longer hold

-> "free seepage" in the well

Maximum well capacity in an unconfined aquifer

Capacity of a well is limited

Yield of the aquifer with a given radius of influence:

$$Q_{\text{yield}} = \frac{(h_0^2 - h_W^2)\pi k_f}{\ln\left(\frac{R}{r_W}\right)}$$

ILeibnizI2UniversitätI4Hannover

The well can withdraw a large amount of water, but the hydraulic gradient cannot deliver it.

eibniz

Maximum Well Capacity in Unconfined Aquifers (Sichardt, 1928)

- Problem of well capacity exists only in <u>unconfined</u> aquifers
- The shallower the aquifer is, the more restrictive is the well capacity
- The smaller the well radius, the smaller is the well capacity
- Larger well diameter = higher drilling costs
- Shallow gravel aquifers: horizontal collector wells to obtain large well capacity

Exercise # 11:

Consider a sandy-gravely unconfined aquifer with a well extracting water with a rate of Q_w of 6.31 10⁻² m³/s. The hydraulic head without pumping is 8.2 m. In quasi steady state, the following hydraulic heads have been measured: r[m] = h[m] | r[m] = h[m]

r [m]	h[m]	r [m]	h[m]
15	6.40	14.95	6.53
30.7	6.80	30.6	6.89
57.7	7.16	57.9	7.23

• Perform a linear regression of the difference between the squares of the undisturbed and measured head h_0^2 - h^2 and the logarithm of the radius ln(r) and determine the hydraulic conductivity kf and the radius of influence of the aquifer. Careful: The rate Q_w has a negative sign if water is pumped from the well.

• Calculate for various radii of the well r_w (0.1 m, 0.25 m, 0.6 m, 1m) Sirchardt's maximum capacity and the maximum extraction rate possible in the given formation with the given well.

• Discuss constructive measures to obtain larger effective well diameters.

l Leibniz 2 Universität 4 Hannover

Read the slope:
$$\frac{\Delta (h_0^2 - h^2)}{\Delta \ln(r)} \approx \frac{10m^2}{1.4} = 7.14m^2$$

 $sl = \frac{Q_W}{\pi k_f} = \frac{-6.31 \, 10^{-2} \, m^3/s}{\pi k_f}$ $k_f = 0.0026m/s$
Read the x-axis for y=0: $\ln(R) \approx 6.2$ $R = 490m$

Consequences of Linearity

- Groundwater flow equation is linear in hydraulic head (at least in confined aquifers)
- Response to a particular stress (pumping) is also linear
- Responses to multiple stresses are additive
 - Sum up drawdowns related to individual wells
 - Subtract drawdown from head field without wells
 - Velocities are also additive
- \Rightarrow "Superposition"

Base case 1: Ambient groundwater flow (confined)

$$h = h_0 + \frac{h_L - h_0}{L} x = h_0 + I x \qquad \vec{q} = \begin{pmatrix} -k_f I \\ 0 \end{pmatrix}$$

Base case 2: Well flow (confined)

$$h = h_0 + \frac{Q}{2\pi T} \ln\left(\frac{R}{r}\right) \quad \vec{q} = -k_f \vec{\nabla} h = -\frac{Q}{2\pi m (x^2 + y^2)} \begin{pmatrix} x \\ y \end{pmatrix}$$

Example: Injection well and extraction well

$$h = C_h - \frac{Q_1}{2\pi T} ln \left(\sqrt{(x - x_1)^2 + (y - y_1)^2} \right) - \frac{Q_2}{2\pi T} ln \left(\sqrt{(x - x_2)^2 + (y - y_2)^2} \right)$$

Example: Injection well and extraction well

Example: Injection well and extraction well

Examle: Ambient flow and well flow

$$h = C_h - Ix - \frac{Q}{2\pi T} ln \left(\sqrt{(x - x_w)^2 + (y - y_w)^2} \right)$$

Examle: Ambient flow and well flow

$$q_x = IK_f + \frac{Q}{2\pi m} \cdot \frac{x - x_w}{(x - x_w)^2 + (y - y_w)^2}$$

$$Qy = \frac{Q}{2\pi m} \cdot \frac{y - y_w}{(x - x_w)^2 + (y - y_w)^2}$$

Environmetal Hydraulics, Groundwater, WS 2011/2012

╋

Ambient flow and injection well

l l Leibniz l 2 Universität l 0 4 Hannover

Ambient flow and extraction well

Ambient flow and extraction well

Characteristics of Flow Fields related to (Multiple) Wells in Ambient Flow

- Dividing streamlines:
 - Separate water bodies of different origin (injection wells, ambient flow) or different destination (extraction wells, ambient flow)
- Stagnation points:
 - Points with zero velocity
 - Crossing points of two dividing streamlines

