Urban Water Management

Within the module: Ecology and Water Resources Summer 2012

April 24 – May 16, 2012

Institut für Wasserwirtschaft, Hydrologie und Iandwirtschaftlichen Wasserbau Leibniz Universität Hannover

Part 6

Prof. Dr.-Ing. Hans-Reinhard Verworn

Overview

Contents today: Real time control

- basics
- example

Integrated management and control

Real time control

- utilise storage capacity to reduce flooding and pollution
- operate regulators in real time
- decision finding needs forecast of rainfall and runoff
 - ⇐ radar data
 - measurements (water levels and flow data)
 - hydrodynamic modelling for the actual and future states of the system
 - ⇐ automatic computer aided decision finding
- ► But:
 - potential users are still sceptic
 - depends on available storage capacity
 - needs well defined objectives and priorities

Integrated management and control

Control of urban drainage systems

- static control
 - structural
 - passive
- real time control
 - Iocal
 - global
 - pro-active instead of re-active
 - \rightarrow forecast needed
- forecast
 - rainfall \rightarrow radar
 - runoff \rightarrow simulation
 - \rightarrow flow into the system

Control Concept

Radar measurement and forecast (nowcasting)

Rainfall runoff simulation - current - forecast

Decision finding

Control Concept

The Radar Rainfall Forecast Processor

Definition of individual storm cells

Recognition of individual storm cells in subsequent radar pictures

Calculation of local speed vectors and linear extrapolation

Measurement t - 25'

Measurement t - 15'

Measurement t - 10'

j.

Measurement t - 05'

Measurement t - 00'

Decision finding with LINOPT

$$\min \sum_{t=1}^{n} \sum_{k=1}^{m} c_{k} \cdot V(\text{element}_{k})_{t}$$
with $t=1..n$ forecast horizon
 $k=1..m$ system elements V_{store}
 Q_{out}
 Q_{overflow}

The capacity constraints may be given as $Q_{out} = 3,5 \text{ m}^3/\text{s}$; $V_{store} = 9800 \text{ m}^3$; $V_{excess} = unlimited$.

The dynamic constraint or node equation is

$$V_{store,t} - V_{store,t-1} + V_{excess,t} - V_{excess,t-1} + (Q_{out} - Q_{in} \cdot \{+ Q_{overflow}\}) \cdot \Delta t = 0$$

The Catchment

Natural creek (dry weather flow ~50 l/s)

receiving storm sewer runoff

Total area620 haSewered area383 haImpervious152 ha

Water Levels for Control Types

Flow below DP Hummel

Conclusions

The advantage of global control is evident

Oscillations of the set points

- \rightarrow are due to linear/hydrodynamic modelling
- \rightarrow should be dampened

Control strategy depends on cost factors e.g. priorities for DPs Gruetz and Hummel

Further improvement is expected by coupling with a knowledge based system