Urban Water Management

Within the module: Ecology and Water Resources Summer 2012

April 24 – May 16, 2012

Institut für Wasserwirtschaft, Hydrologie und Iandwirtschaftlichen Wasserbau Leibniz Universität Hannover Part 4

Prof. Dr.-Ing. Hans-Reinhard Verworn

Overview

Contents today: Drainage (continued)

Waste water plus storm water

- amount and pollution
- drainage systems
 - \rightarrow combined systems
 - \rightarrow separate systems
- dimensioning of pipes
- storage
 - \rightarrow stormwater overflow tanks
 - \rightarrow stormwater retention tanks
- dimensioning of tanks

Combined systems

- Stormwater overflow tanks (CSO tanks)
- in comparison to stormwater <u>detention</u> tanks:
 - less specific volume
 - other tasks
 - → reduce the overflow pollution, not the peak flow
 - \rightarrow catch the "first flush"
 - keep it in the tank
 - release to treatment plant after rain event
- two types of tanks:
 - with and without limited (treated) overflow

Stormwater overflow tanks

- with or without treated overflow
- in-line or off-line
- tanks or storage sewers
- Iimited capacity
- separation structure \rightarrow excess overflow
- treated overflow : limited
- excess overflow : unlimited
- overflow goes into receiving water, sometimes via retention tanks (hydraulic reasons)

Stormwater overflow tanks

- without treated overflow
- for retaining the first flush

in-line location

- SpKa storage structure
- **BÜ** excess overflow structure
- DBw throttle device
- EK overflow sewer
- ABw outlet structure
- TB separation structure

off-line location

Stormwater overflow tanks

- with treated overflow
- runoff passed through for treatment = sedimentation
- treated overflow structure within the tank

BÜ BÜ EK_(B0) ABw ABw ABw

- SeKa storage/sedimentation structure
- **BÜ** excess overflow structure

in-line location

- DBw throttle device
- EK overflow sewer
- ABw outlet structure
- TB separation structure
- KÜ treated overflow structure

Stormwater overflow tank off-line, with treated overflow

left: excess overflow weir

right: weir to the tank

Stormwater overflow storage: storage sewer

• upper or lower overflow structure

Stormwater overflow storage: storage sewer

• upper or lower overflow structure

Design principle

for storm water overflow tanks

To reduce pollution load into receiving waters

Objective:

$$PL_{CSO} + PL_{WWTP(rain)} \le PL_{SWS}$$

- PL pollution load
- CSO combined sewer overflow
- WWTP waste water treatment plant
- (rain) indicates the fraction due to rain induced surplus load from the WWTP
- SWS stormwater sewer

Stormwater retention tanks

- reduce peak flow
- in-line or off-line
- objective: overflow only with certain return period
- Design values:

throttle discharge Q_{lim} [m³/s]

return period of overflow T [a]

• to be found: required volume

Stormwater retention tanks

• required volume

Stormwater

retention

tanks

• required volume

b) 🦼

$$V_{in} = \frac{r_D \cdot D \cdot 60}{1000}$$

Stormwater retention tanks

• required volume

Stormwater retention tanks

• required volume

Stormwater retention tanks

• required volume

$$V_{s,imp} = (r_{D,f} - q_{dr}) \cdot D \cdot 0,06 \cdot x_{corr}$$

V _{s,imp}	= specific volume related to the impervious area r
۲ _{D,f}	= rainfall rate of defined duration D and frequency f [l/s*ha)]
q <i>dr</i>	= throttle runoff rate [l/s*ha)]
D	= duration [min]
Xcorr	= correction factor (safety, flow time, throttle runoff variation)

solution

calculate for all relevant durations to find maximum $V_{\mbox{\scriptsize s}}$

Stormwater retention tanks

• required volume

calculation

with Excel:

an example

Drainage systems Performance assessment

Structural situation and hydraulic performance for :

- Operation
- Maintenance
- Rehabilitation planning and design
- Performance

Frequency with which a defined boundary condition is exceeded (water levels, peak flows, volumes)

Assessment

- Computational power
- Models
- Two concepts \Rightarrow design rainfall
 - \Rightarrow continuous simulation

Performance assessment

Load case principle

Time series simulation

Design criteria and return periods

Flooding (EN 752)

"condition where wastewater and/or surface water escapes from or cannot enter a drain or sewer system and either remains on the surface or enters buildings"

 $\widehat{\mbox{\ }}$ connected with damage

 \hat{U} depends on local surface conditions

Surcharge

"condition in which wastewater and/or surface water is held under pressure but does not escape to the surface to cause flooding"

Manhole surcharge

"condition in which the water level reaches the surface and water escapes to the surface"

Return period ?

Drainage systems Design frequencies

Recommended design frequencies in EN 752 and DWA-A 118

Design Storm Frequency * (1 in "n" years)	Location	Design Flooding Frequency (1 in "n" years)	Design Surcharge Frequency (DWA-A 118) (1 in "n" years)
1 in 1	Rural areas	1 in 10	1 in 2
1 in 2	Residential areas	1 in 20	1 in 3
1 in 2 1 in 5	City centres, industrial/commercial areas - with flooding check - without flooding check	1 in 30	< 1 in 5
1 in 10	Underground railway/underpasses	1 in 50	< 1 in 10

* For design storms no pipe surcharge shall occur.

Performance assessment

 Load case principle: design rainfall construction

Type 2: invert first third

Performance assessment

 Statistical analysis with time series simulation: frequency n of design limit exceedance

a) Counting

x surcharge events in M years $\Rightarrow n_{s} = x / M$ Example: $x = 7, M = 25 a \Rightarrow n_{s} = 0.28 1/a$ $T_{s} = 3.6 a$ sufficient, if $M \ge 3 / n_{s,crit}$ or $M \ge 3 \cdot T_{crit}$

Performance assessment

 Statistical analysis with time series simulation: frequency n of design limit exceedance

b) Distribution function

Waste water treatment plants (some basic principles)

• Pre-treatment (within the sewer network)

• Treatment plant

Waste water treatment plant

• General functioning scheme

Waste water treatment plant

• Sedimentation / settling tanks

Clarifier with sludge raker

Waste water treatment plant

• Sedimentation / settling tanks

Vertical flow settling tank