Class on Solid Waste Management

16. Processing and UtilisationII Construction Waste + Scrap Wood

Solid Waste Management Dr.-Ing. Dirk Weichgrebe

Types of Construction Waste

- Building rubble
- Excavation
- Roadway rubble
- Construction site waste

EWC-No.	Waste Terminology
17	Construction and demolition rubble (including excavation of polluted sites)
17 01	Concrete, bricks, tiles, and ceramics
17 02	Wood, glass, and plastic
17 03	Bitumen mixtures, coal tar, and tar-containing products
17 04	Metals (including alloys)
17 05	Soil (including excavation of polluted sites), stones, and dredged material
17 06	Insulating material and asbestos-containing building materials
17 08	Building materials on gypsum basis
17 09	Other building and demolition waste

These 4-digit groups are subdivided into 6-digit categories, among others into not particularly harmful waste (nbüA) and particularly hazardous waste (büA), for instance for Group 17 01:

17 01 01	nbüA	Concrete
17 01 02	nbüA	Tiles
17 01 03	nbüA	Tiles, bricks, and ceramics
17 01 06	büA	Mixtures or separate fractions of concrete, bricks, tiles, and ceramics which contain hazardous substances
17 01 07	nbüA	Mixtures of concrete, bricks, tiles, and ceramics except those subsumed under 17 01 06 $$

In the recycling practice, the classification of construction waste is done according to substance and origin. At least the following Waste Key Numbers are relevant.

Soil excavation without pollutant load 170504 Roadway rubble from asphalt 170302 Roadway rubble from tar-containing asphalt 170301 Roadway rubble from concrete 170101 Building construction 170101, 170102, 171003, 170104 from concrete from brickwork

Construction site waste 170701

Solid Waste Management Dr.-Ing. Dirk Weichgrebe

Leibniz Universität Hannover

construction and demolition waste 2008

(incl. road construction waste, harmless)

Solid Waste Management

Dr.-Ing. Dirk Weichgrebe

Technical instructions on produced from construction waste are more and more included in technical rules and regulations

> Directives on the quality control of mineral substances in road construction (RG Min-StB 93); Issue 1993/996

Road construction

Leaflet on the re-use of concrete from road surfaces; Issue 1998

Technical Test Procedure for mineral materials in road construction (TP Min-StB) 1999; Issue 1999

Technical delivery terms for mineral materials in road construction TL Min StB 2000); Issue 2000

Directives on the environment-friendly application of industrial by-products and recycling building materials in road construction RuA-StB 01); Issue 2001

Solid Waste Management Dr.-Ing. Dirk Weichgrebe

Leaflet on the re-use of mineral building materials as recycling building materials in road construction (M RC); Issue 2002

Leaflet on the re-use of bitumous lining material in road construction using bitumen emulsions; Issue 1993

Leaflet on the application of asphalt granulate (M VAG); Issue 2000

Directives on the environment-friendly utilisation of lining material with typical tar/bitumen components and on the utilisation of lining asphalt in road construction (RuVA-StB 01); Issue 2001

Leaflet on the application of lining asphalt and bitumous roadway rubble in substrata with hydraulic binding agents; Issue 2002

DAfStb Building Material Recycling Directive, Parts 1 and 2, German Committee for Reinforced Concrete, Berlin 1998

DIN 4226-100, Aggregates of concrete and mortar, Part 100: Recycling Aggregates, DIN, German Institute for Standardisation, registered society, Beuth-Verlag, Berlin 2002

> Solid Waste Management Dr.-Ing. Dirk Weichgrebe

Amounts and Disposal of Construction Waste

Excavation 1670 kg / P·a Building rubble 700 kg / P·a Roadway rubble 215 kg / P·a Construction waste amounts \approx Municipals wast amounts \cdot factor 5 to 10

	1990	1990 1996 1996		1998	2002	2 2004	
Waste amounts in the building industry without	132,7	220	,0	205	189		200,7
internal utilisation on building sites, e.g. excava-							
tion and refilling in/under road surfaces, of							
which:		136	,8	128,0	115,7		128,3
excavation		58	,1	58,5	52,1		50,5
building rubble		17	,6	14,6	16,6		19,7
roadway rubble		6	i,5	4,0	4,3		1,9
construction site waste		1	,0				
construction timber and demolition wood					0.3		0,3
building rubble hard plaster based							,
of which disposed:	119,4	9,4 147 (66%)				142	(70%)
disposed on soil and construction waste landfill	113,1						
disposed on public landfills for municipal waste	4,9						
 other disposal; recultivation of mining areas 	1,4	6	61				
	1990	1996	1996			2004	2004
		dispo-	utilised			dispo-	utilised
		sed	(rate)			sed	(rate)
Excavation		123,5	13,3 (10%)			119,2	9,1 (7%)
Building rubble		17,4	40,7 (70%)			19,4	31,1 (62%)
Roadway rubble		2,6	14,0 (80%)			1,3	18,4 (93%)
Construction site waste		2,92	3,5 (55%)			1,8	0,1 (5,3%)
Construction timber and demolition wood		??	??			0.28	0.0

Leibniz Universität

Hannover

Repository Building

Dr.-Ing. Dirk Weichgrebe

Mass Flow Balance for Building Materials/Construction Waste 1000 Mg nach Gallenkemper et al., KA 1999

in D 1993

Hannover

Solid Waste Management Dr.-Ing. Dirk Weichgrebe

24

100

Jniversität

Hannover

Quelle: Krass, K.; Jungfeld, I.; Trogisch, H. Anfall, Aufbereitung und Verwertung von Recycling-Baustoffen und industriellen Nebenprodukten im Wirtschaftsjahr 1999 – Teil 1: Recycling-Baustoffe. Straße und Autobahn 53 (2002) 1, S. 22 – 30.

Porzentuale Verteilung des aufbereiteten Bauschutts auf die verschiedenen Verwertungsbereich (Percental allocation)

Solid Waste Management Dr.-Ing. Dirk Weichgrebe

Dr.-Ing. Dirk Weichgrebe

1 1 Leibniz 1 0 2 Universität 1 0 7 4 Hannover

Leibniz Universität

Hannover

Forecasts on the production of construction waste

- Rahlwes [1991] to 2020
- Görg [1997] to 2010
- Fleckenstein et al. [1998] to 2040
- Study DIW [1999] to 2010

Solid Waste Management Dr.-Ing. Dirk Weichgrebe 1 1 Leibniz 102 Universität 1004 Hannover

Mass flow diagram for plastic waste produced each year

nach L. WOLTERS; J. V. MARWICK; K. REGEL; V. LACKNER; B. SCHÄFER

Solid Waste Management

Dr.-Ing. Dirk Weichgrebe

Knob plates

Plates with knob surface and mounting pins, for hall floors, parking lot surfaces, pavements, etc., elastic, break-proof, heat and cold resistant, recycled PE/PP

Grid blocks

Grid plates with mounting

pins, as temporary floor

cover, natural infiltration

warranted, very resilient,

break-proof, heat and cold

resistant, recycled PE/PP

Paving "stones"

As floor cover for roads, drives or parking lots, resilient up to 40 t at a mass of 1520 g/piece, easily laid, break-proof, heat and cold resistant, recycled PE/PP

Solid Waste Management Dr.-Ing. Dirk Weichgrebe

Roofing

Roofing tiles with a guaranteed durability of 50 years, algae-resistant, warp-resistant, and weatherproof, UV stable, very good heat and sound insulation, different colours, recycled plastic

Profiles

Spacers for the armouring in concrete formwork in variable cross-sections and lengths, U and H press cuts possible, PVC grinding material from production scrap of the plastic-processing Industry

Pipes, bushings

Pressure-less pipes for rainwater or wastewater pipelines, or as insulation of hot water pipes, also fittings, cable protection pipes, and cladding tubes, among others made of post-consumer yoghurt cup grinding material from the collections of the DSG

Solid Waste Management Dr.-Ing. Dirk Weichgrebe

Construction

Bottom attachments

Hydraulic engineering

Embankments, wave Breakers, also posts, plates, jetties, etc., chemically resistant, rot-proof, elastically and mechanically highly resilient, inherently stable, maintenancefree and biologically inactive; recycled plastic

Noise and Sight Protection Walls

Noise protection walls and screens for landscaping, simple mounting through relatively low mass of the single components, inherently stable, weather-resistant, usable for planting; recycled plastic

Profile Boards

Profile boards for the building of paddocks, fences, railings and gates, simple maintenance and high durability without impregnation, cleaning with hot steam, moisture repellent and frostproof; recycled plastic

Solid Waste Management Dr.-Ing. Dirk Weichgrebe

Legal Framework and Waste Management Targets for Construction Waste

- Aspects like waste prevention (service life), material utilisation, and environment-friendly disposal (low pollutant amounts; few composites; soluble compounds) should already be considered during the development of new building materials, building products and building methods.
- Waste for disposal should be prevented as much as possible through suitable measures (such as choice of construction materials, construction methods, procedure of demolitions, direct re-use at the building site).
- Utilisation under observation of the quality requirements according to the KrwG-/AbfG has priority over disposal.
- At the sites where waste is produced, waste which is utilisable according to KrwG-/AbfG should be kept separate from polutted construction waste (for instance, asbestoscontaining waste should be separated from other polluted types) and non-utilisable waste
- Extraneous material should be collected and disposed of separately.
- Special landfill categories D0 and D I for unpolluted mineral waste
- For construction waste, there is no Ordinance, but the negotiated environment agreement of the *Kreislaufwirtschaftsträger Bau (KWTB), i.e. the* participants in the recycling waste management in the building industry.

Quality Requirements on Recycling Building Material

Quality requirements

- suitability as building material, and
- environmental behaviour
- suitability as building material/ seal of quality \rightarrow Equivalence
 - Weather-resistance, frost-resistance
 - Grain shape, ratio of crushed grains
 - Grain strength, grain density, bulk density
 - Affinity to bitumous binding agents
 - Proctor density; settlement behaviour, shearing strength
 - DIN 4426-100 requirements on aggregates in regard to material composition and raw grain density for concrete and mortar

Components	Composition Percent by weight				
	Type 1	Type 2	Туре 3	Type 4	
Concrete and aggregates acc. to DIN 4226-1	≥ 90	≥ 70	≤ 20		
Tiles, non-porified bricks	< 10	< 20	≥ 80	≥ 80	
Lime sand brick	≤ 10	≤ 30	≤ 5		
Other mineral components ^a	≤ 2	≤ 3	≤ 5	< 00	
Asphalt	≤1	≤1	≤ 1	≤ 20	
Alien components ^b	≤ 0,2	≤ 0,5	≤ 0,5	≤ 1	
Minimal grain density (kg/m³)	20	00	1800	1500	
Variation range raw grain density (kg/m³)		± 150		no requirements	

Solid Waste Management Dr.-Ing. Dirk Weichgrebe

Quality Requirements on Recycling Building Materials

- Environmental behaviour
 - LAGA Directive "Requirements on the material utilisation of mineral waste"

	Z 0	Z 1.1	Z1.2	Z 2	Z 3	Z 4	Z 5			
Emplace- ment ca-	Utilisation	Utilisation		Utilisation		Restricted em- placement with	Disposal	Disposal	Disposal	Disposal
tegories	unrestricted	restri	cted	defined safety		1 101	Special waste	Special waste		
(LAGA)	emplacement	open place	em- ment	measures	= Landfill Category I	= Landfill Category II	aboveground landfill	landfill		
	W 0	W 1.1	W 1.2	W 2						
Mining- specific utilisation above ground (LAB)	Unrestricted utilisation	Restr utilisa (emis neutral catio	icted ation sion- appli- on)	Restricted utili- sation with de- fined technical safety meas- ures	(Waste De- positing Ordinance	(Waste De- positing Ordi- nance)	(TI Waste)	(TI Waste)		
	V 0 _a	V 0 _b		V 1 (2	,	V 2				
Stowing under- ground (LAB)	Unrestricted s with extensive pollution ma	towing Iy low- terial	Restricted stowing Restricted stowing with a certain (emission-neutral application) capsulation)				wing with defined res (complete en- culation)			

Significance of the LAGA-Z Values

 Utilisation of mineral waste depending on components and eluatability (Pollutant classes Z.....)

Z 0	Unrestricted emplacement (compa- rable to natural soils))	No impairment to be expected; still: no application on particularly sensitive areas
Z 1.1	Restricted (usage-related) open emplacement	Exceptions: water-protection areas, nature re- serves, biotope areas
Z 1.2	Restricted (usage-related) open emplacement	Exceptions: agricultural areas; hydro-geologically unfavourable areas; necessary: protection against erosion (closed plant cover); >1m distance to groundwater
Z 2	Restricted (usage-related) em- placement with defined technical safety measures	Under upper sealings (d>0,50 m kf <1.10 ^{.8} m/s) or little or non-permeable cover layers

Solid Waste Management Dr.-Ing. Dirk Weichgrebe

Emplacement conditions according to LAGA Z 0

Z 0	Z 1.1	Z 1.2	Z 2
Unrestricted open Emplacement	Restricted open em- placement. No sensitive Areas	Restricted open em- placement. Hydrologically favourable ares, vegetation Layer	Restricted open em- placement with defined technical safety Measures

Application permitted: Playgrounds, footballs areas, sports facilities, unsealed schoolyards, allotments and domestic gardens, horticulturally or agriculturally used areas, defined or planned drinking water protection areas or mineral spring protection areas (Zones I and II)

Application permitted:

recultivation areas in mining regions, road construction and accompanying earth work measures, industrial, commercial, and storage areas, parks with closed vegetation layers. Distance between pouring body bottom and highest assumed groundwater level at least 1m

Application not permitted:

drinking water or mineral spring protection areas which have been defined, temporarily seized or planned by the responsible authorities, areas with frequent flooding (e.g. flood control reservoirs, dammed-in areas), particularly sensitive areas (Z 0)

Emplacement Conditions according to LAGA Z 2

LAGA-Z Values

Directive		AbfAblV 2001 / LAGA 1997					
Specification			Z 0	Z 1.1	Z 1.2	Z 2	Z 3 =Landfill Cate- gory I
Description			unrestricted	restricted open	like Z 1.1; in hydro-geolog. Favourable areas	restricted	Inert material landfill DI
Solids criteria							
Ignition losse		% of the DS					3
TOC		% of the DS					1
Extractable lipophile subs	tances	% of the OS					0,4 /
Extractable org. halogene	s EOX	mg/kg	1		5	10	10
Hydrocarbons	HC	mg/kg	100	300	500	1.000	1.000
Polycyclical aromatic HCs		mg/kg	1	5 (20)	15 (50)	75	75 (100)
(Σ 16 PAH acc. to US/EPA)	PAH		0.00			(100)	
PCB (2 6 PCB acc. To DI	N 51527)	mg/kg	0,02	0,1	0,5	1	1
Cyanides, total	CN-	mg/kg	1				
Arsenic	As	mg/kg DS	20				
Cadmium	PD	mg/kg DS	100				
Cadmium	Ca	mg/kg DS	0,6				
Chiomum	CI	mg/kg DS	50				
Niekol	Ni	mg/kg DS	40				
Mercup	Ha	mg/kg DS	40				
Zinc	Zn	mg/kg DS	120				
Eluate criteria	2	inging Do	120				
pH-value						7 0-12 5	5.5 - 13.0
Conductivity		uS/m	500	1.500	2,500	3.000	10.000
Chloride Cl-		ma/l	10	20	40	150	
Sulphate	SO.	mg/l	50	150	300	600	
Arsenic	As	ug/l	10	10	40	50	200
Lead	Pb	ug/l	20	40	100	100	200
Cadmium	Cd	ug/l	2	2	5	5	50
Chromium (total)	Cr	ug/l	15	30	75	100	
Chromium VI	Cr VI	µg/1	.0				50 /
Nickel	Ni	ug/l	40	50	100	200	200
Copper	Cu	µg/1	50	50	150	100	1.000
Mercury	Ha	µg/1	0.2	0.2	1	2	
Zinc	Zn	μg/1 μg/1	100	100	300	400	2 000
Phenole index	20	μg/l	< 10	100	50	100	2.000
Organic carbon	TOC	μg/l	. 10	10	50	100	200
Ammonium N	NHN	μg/l					4 000 /
		µg/i					4.000 /
Ausoinanie. org. nalog.	AUX	μg/l					3007

Solid Waste Management Dr.-Ing. Dirk Weichgrebe

Scrap wood

Scrap wood: collective term for residual industrial wood and used wood

Residual industrial wood:

wood residues emerging from wood machining and processing as well as residues

of derived timber products and wood composite

produced in the derived timber industry.

- The latter need to contain at least
- > 50 mass % wood.

Used wood:

wood residues originating from used products made of solid wood, derived timber products, or wood composites (wood ratio > 50 mass %)

Scrap Wood Ordinance

- Scrap Wood Ordinance (AltholzV, 2002; Ordinance on the Disposal of Scrap Wood)
 - Quality categories
 - Allocation to different disposal ways
 - Requirements on material and energetic utilisation and disposal

Quality Class	Allocation Criteria
A 1	Natural or only mechanically treated scrap wood which during its usage was pol- luted only insignificantly with substances foreign to wood
A 2	Bonded, painted, coated, varnished, or otherwise treated scrap wood without or- ganic halogen compounds in the coating and without wood preservatives
A 3	Scrap wood with organic halogen compounds in the coating without wood pre- servatives
A 4	Scrap wood treated with wood preservatives, such as railroad sleepers, telephone posts, hop poles, vine poles, and other scrap wood which because of its pollutant load cannot be allocated to Scrap Wood Categories A I, A II or A III, excluding PCB scrap wood
PCB Scrap Wood	Scrap wood which is PCB waste according to the PCB/PCT Scrap Wood Ordi- nance and which must be disposed of in line with its regulations, particularly insu- lation and sound-insulation plates treated with agents that contain poly-chlorinated biphenyls

Solid Waste Management Dr.-Ing. Dirk Weichgrebe

Construction	Waste	in the	Scrap	Wood	Ordinance
	vvaolo		Corup	v v 000	

	Standard allocation	Waste Key		
	Building site	Natural solid wood	AI	17 02 01
	goods	Derived timber products, cladding timber, treated solid wood (without harmful pollu- tions)	A II	17 02 01
		Floorboards, dead floors, plank boarding from interior work (without harmful pollution)	AII	17 02 01
		Door leaves and sashes of inside doors (without harmful pollution)	AII	17 02 01
Scrap wood from construc-	Scrap wood	Profile leaves for interior design, ceiling panels, decoration beams, etc. (without harmful pollution)	A II	17 02 01
tion	from demoli- tion and de-	Insulation and sound-proofing plates treated with PCB-containing agents	Disposal	17 06 03*
	construction	Building chiboards	AII	17 02 01
		Construction timber for supporting parts	A IV	17 02 04*
		Wood framework and rafters	A IV	17 02 04*
		Windows, window stocks, outside doors	A IV	17 02 04*
		Impregnated building wood from the exte- rior	A IV	17 02 04*
Building and demolition wood with harmful pollution				17 02 04*
		Solid Waste Management		<i>lit</i> Leibniz

Dr.-Ing. Dirk Weichgrebe

Leibniz Universität Hannover

Dr.-Ing. Dirk Weichgrebe

Hannover

Solid Waste Management
DrIng. Dirk Weichgrebe

	Scrap Wood Ordinance	Natural Wood	Used Wood			
	[mg/kg DM]					
Arsenic	2	~ LoD (0.02 - 1)	1 - 4			
Chromium	30	0.5 - 5.6	20 – 30 Single values of fences and poles up to 100 times higher			
Copper	20	< 2 – 6.2	7.5 - 55			
Mercury	0.4	~ LoD (0.01 – 0.05)	around 0.1			
Fluorine total	600	around 100	x·100 - x·1000			
Fluorine	100	n.d.	n.d.			
Lindan		~ LoD (0.001 – 0.13)	< 0.1 – 0.6			
PAH		~ LoD (0.01 – 0.1)	20 - 80			
PCB	3	0.01	0.2 – 0.5			
PCP	5	0.01 – 0.1	1 - 10			

LoD = Limit of detection

Solid Waste Management Dr.-Ing. Dirk Weichgrebe

Leibniz Universität Hannover

Pollutant contents from dye pigments in scrap wood

	Scrap Wood Ordicance	Natural Wood	Used Wood
		[mg/kg DM]	
Lead	30	~ LoD (0.1 – 5)	100 – 200
Cadmium	2	~ LoD (0.1 – 0.3)	0.8 – 1.6
Nickel		~ LoD	3 – 10
ZInc		6 - 61	100 - 1000

Solid Waste Management Dr.-Ing. Dirk Weichgrebe

Scrap Wood Category A I: Natural or only mechanically treated used wood, which during its usage was not more than insignificantly polluted with substances which are foreign to wood

Scrap Wood Category A II: Bonded, painted, coated, varnished, or otherwise treated scrap wood without organic halogen compounds in the coating and without wood preservatives

Scrap Wood Category A III: Scrap wood with organic halogen coumpounds in the coating without wood preservatives

offer of the cost of the cost

industrial charcoal Requirements on the application of derived timber

Material Utilisation

products [mg/kg DM] Arsenic 2 Lead 30 Cadmium 2 Chromium 30 Copper 20 0.4 Mercury 600 Chlorine 100 Fluorine PCP 3 PCB 5

Leibniz

Universität Hannover

Scrap Wood Category A I

Scrap Wood Category A II

Scrap Wood Category A III

Scrap Wood Category A IV: Scrap wood treated with wood preservatives, such as railroad sleepers, telephone posts, hop poles, vine poles, and other scrap wood which due to its pollutant load cannot be allocated to Scrap Wood Categories A I, A II or A III, excluding PCB scrap wood

Energetic Utilisation

Small heating systems

plants approved according to the 4th BImSchV

plants approved according to the 4th BImSchV with flue gas scrubbing according to the 17th BImSchV

> Leibniz Universität

Hannover

102

Solid Waste Management Dr.-Ing. Dirk Weichgrebe

Processing steps prior to material or energetic utilisation

Solid Waste Management Dr.-Ing. Dirk Weichgrebe

Dr.-Ing. Dirk Weichgrebe

Material utilisation in building materials and basic materials

- Production of derived timber products
- Production of wood concrete
- Application as porosing agent in bricks or expanded clay

Material utilisation as raw material or auxiliary agent

- Application as reducing agent in the steel production
- Application to condition sewage sludge or special waste

Hannover

		Type of ash			
		coarse	medium	fine	
Са	[g/kg]	283	215	167	
Mg	[g/kg]	34	34	25	
К	[g/kg]	129	98	76	
Na	[g/kg]	20	18	13	
Р	[g/kg]	14	70	28	
As	[mg/kg]	n.d.	2	7	
Cd	[mg/kg]	< 1	15	63	
Cu	[mg/kg]	98	90	122	
Cr	[mg/kg]	69	61	50	
Hg	[mg/kg]	n.d.	n.d.	0.05	
Pb	[mg/kg]	3	18	59	
Zn	[mg/kg]	112	816	2920	
CI	[mg/kg]	198	1120	5250	
F	[mg/kg]	68	2100	4860	

Substance Separation Through Controlled Deconstruction

- Instead of "mixed demolition ": deconstruction and preliminary separation at the building site
 - Pollutant loads \downarrow ; Resources quality \uparrow

•

•

steps

- Acceptance criteria of disposal plants achievable
- Disposal costs decrease, demolition costs increase .
- Building material usage in structural engineering in weight % according to WALKER et al., 1993

Year of Construction	1949	1961	1973	1987
Ready-mix concrete	0	2	25	41
Site-mixed concrete and precast concrete units	28	45	27	13
Brickwork	46	31	24	15
Mortal, floor pavement, et al.	19	15	11	8
Others (insulation material, steel, fibre-boards, plaster- boards, etc.	7	7	13	23

Step Activities Extracted substance Demounting of contaminated areas Lightly-bound asbestos building elements, harmful dusts 1 2 Non-destructive dismantling of directly Fitments, fittings, lamps, aggregates, switching cabinets, ra-Deconstruction re-usable components, emptying of pipdiators, machines ing 3 Dismantling of components re-usable Stairs, windows, banisters, roofing tiles, pipes, parquet floors after preliminary treatment 4 Disassembly and separate collection of Glass, wood, metals all other re-usable materials 5 Removal and separate collection of all Insulation material, filling foam, tarpaper, treated wood, plasnon-reusable materials terboards 6 Deconstruction of the building stock Brickwork, concrete constructions, foundations, staircases, incl. outside and underground parts steel profiles

> Solid Waste Management Dr.-Ing. Dirk Weichgrebe

100 24 Universität

Hannover

Dismantling Network Plan for a 3-Storey Residential Building according to Schultmann and Rentz, MuA 1999, p. 206-217

Dr.-Ing. Dirk Weichgrebe

Constrcution Waste from Sanitation / Renovation

- Instead of mixed construction waste, separate collection as follows:
 - dry organic resources (cardboard, foils, other plastic [possibly PVC and EPS separately]; cardboard
 - Scrap wood according to Categories A 1 A 4
 - Fe metals, NI metals
 - Building rubble (stones, sand, concrete, brickwork, building materials containing plaster)
 - Special waste (varnishing residues, packaging material with harmful residual contents, cleaning rags, batteries, unknown liquids, tarry materials, asbestos, etc.)
 - non-usable, predominantly organic construction waste (soiled resources, insulation material, cable cuttings, treated wood, sandpaper and wallpaper residues, etc.)
 - domestic waste-like commercial waste (waste accrued during breaks in the work, office waste)

Solid Waste Management Dr.-Ing. Dirk Weichgrebe

Sorting and Processing of Construction Waste

- Plant licensing procedure see 4th BImSchV
 - according to §10 BImSchG with public procedure for ≥ 10 t/h
 - according to §19 BImSchG with simplified procedure for < 10 t/h
- Plant components:

Plant component	Application, target
Wheel-loader, dredge	Charging and loading
Screening units	Separation of undersize particles before comminution, of over- size particles for recirculation or different utilisation, classifica- tion into defined grain size categories
Crushers	Comminution (impact crushers, gyratory crushers, jaw crushers, cone crushers)
Conveyor belts, apron conveyors, push floors, vibrating chutes	Transport and connection elements
Magnet separators;	Steel/iron separation;
NI metal separators	NI metal separation
Manual sorting	Separation of extraneous material and light fractions
Air classifier	dry separation of light fractions
Aquamator, hydro-drum	wet separation of light fractions
Storage heaps	For basic material and processed material

Leibniz

Universität

Hannover

Solid Waste Management Dr.-Ing. Dirk Weichgrebe

Mobile Crusher metsominerals

Solid Waste Management Dr.-Ing. Dirk Weichgrebe

Semi-Mobile Construction Waste Processing Plant according to Bilitewski, 1995

Solid Waste Management Dr.-Ing. Dirk Weichgrebe

Leibniz Universität Hannover

102

Stationary Construction Waste Processing Plant according to Bilitewski, 1995

Solid Waste Management

Dr.-Ing. Dirk Weichgrebe

Construction Waste Processing Plant ISV at Hannover-Altwarmbüchen 26

Application Options of Recycling Building Material in Earthworks and Road Construction

Solid Waste Management

Dr.-Ing. Dirk Weichgrebe

Leibniz Universität

Hannover

Utilisation of Bitumous Roadway Rubble

- More than 90% of the road surfaces in Germany are blacktops; concrete is used almost only for the federal motorway, paving in residential and inner city areas
- Bitumous building materials can be utilised without problems; old blacktops may contain pitch (formerly tar; from coal coking; PAH-containing (carcinogenic)); waste which contains pitch should as much as possible be utilised in cold processes
- Bitumen utilisation in building site or mixed plant method; requirements of the federal lands

Solid Waste Management Dr.-Ing. Dirk Weichgrebe

Methods for the Re-Use of Demolition Asphalt

In-situ

- Demolition asphalt is processed with or without additional mixing materials
- The potential quality improvement is limited
- · Three methods:
- Re-shape
- Re-pave
- Re-mix

At the plant

- Demolition can purposefully be processed with additional mixing materials
- High-quality asphalt can be produced
- Batch method and continuous method possible

Ecological advantages of Conrete with Recycled Aggregates ?

	Concr	Gravel concrete					
	BIM Project: Hundertwasser House in Darmstadt	BIM Project: Gesundheitshaus in Münster	Cor / (N i	ncrete with RC C Aggregates natu Vanufacturer (n information) i		Concrete with natural aggregates (manufacturer information)	
Concrete	1	2		3	4		
Strength class DIN	B 25	B 25		B 25	B 25		
Consistency	KR	KR		KR	KR		
Application	Interior building element	Interior building element	Int	erior building element	Interior building element		
Composition per m ³ concrete							
Cement (CEM 1)	280 kg	340 kg		240 k	kg	240 kg	
Fly ash	60 kg	70 kg		80 k	g	70 kg	
Natural aggregate	1196 kg	1129 kg		878 kg		1830 kg	
Recycling aggregate	581 kg	528 kg		840 kg		-	
Plastifying admixture	1.4 kg	1 kg		1.2 kg		1.2 kg	
Water	180 kg	187 kg		186 kg		180 kg	
Total weight	2298.4 kg	2255 kg		2225.2 kg		2321.2 kg	
Colid Maste Management							

Olid Waste Management Dr.-Ing. Dirk Weichgrebe

Comparison of 3 reference numbers:

- Saving of resources
- CED (Cumulative energy demand): guide indicator of energy-related environmental effects
- CO₂ equivalent

	Concr	Gravel concrete		
	BIM Project: Hundertwasser House in Darmstadt	BIM Project: Gesundheitshaus in Münster	Concrete with RC Aggregates (Manufacturer information)	Concrete with natural aggregates (manufacturer information)
Concrete	1	2	3	4
Resource saving gravel	581 kg	528 kg	840 kg	
CED _H *	1774.8 MJ	2105.0 MJ	1604.3 MJ	1418.1 MJ
CO ₂ equivalent	269.6 kg	326.5 kg	232.3 kg	229.8 kg

* 65% of all greenhouse gas including the CO_2 emissions, 90% of the SO_2 emissions, and 85% of the NO_x emissions are caused by energy consumption

Solid Waste Management Dr.-Ing. Dirk Weichgrebe

