Lecture 5

Methods of Drinking Water

Treatment and Storage

Part a) Treatment

Water purification

Quality requirements according to DIN 2000

Water that does not need a purification is to be preferred to water that should be considered for treatment.

Measures for the water purification are basically:

- Complete removal of the human related (anthropogenic) contaminants that cannot be found in nature (toxic substances), e.g. According to § 12 (13) TrinkwV (Drinking water regulation)
- Extensive reduction of undesirable substances (impurities), e.g. Iron, manganese
- Adjustment of specific substances in order to reach a desired concentration, e.g. components of the lime-carbonic acid-balance
- Addition of O_{2} until saturation, pH -balance

Aeration

Open (unpressurized)
The aim is a gas exchange (Gasaustausch).
Procedure: cascade aeration (Kaskadenbelüftung), spraying tower (Turmverdüsung)
Disadvantage: possible nitrogen accumulation (Stickstoffanreicherung) in the filter bed

Closed (pressurized aeration)

The aim is the oxidation, transformation of Fe^{2+} in Fe^{3+}.
Oxygen requirement $0.14 \mathrm{mg} \mathrm{O}_{2}$ for $1 \mathrm{mg} \mathrm{Fe}^{2+}$
Procedures: oxidation, liquid oxygen, contact filter columns (Füllkörperkolonne)

INKA- Cross-Flow Aeration

Cascade aeration

Prof. Dr.-Ing. K.-H. Rosenwinkel, Sanitary Engineering, SS 12

Contact filter column with reverse-flow (Gegenstrom)

Technical data \& applications for gasification and degasification

Method	Surface load in $\mathrm{m}^{3} / \mathrm{m}^{2 \star} \mathrm{~h}$	Necessary admission pressure in m WC	Total power demand in $\mathrm{Wh} / \mathrm{m}^{3}$ air	CO_{2} - removal efficiency	O_{2} - diffusion efficiency
Spraving Piping grid cascade	$6-15$	$10-15$	60	70	100
Corrugated- sheet tickler (multi-stages)	bis 800	10	30	65	100
Contact filter column	$45-60$	2	20	90	$95-100$
INKA	10	55	$70-95$	k. A.	

Filtration of aerated/ventilated water

Filtration:
concentration change, mostly reduction of specific substances in water (Wasserinhaltsstoffe) by percolation (Durchströmen) through a filter material.

Filter effect:

- melchanical-physical (adsorption), e.g. by silica sand (Quarzsand), anthracite
- chemical by lime rock, e.g. marble, semi calcinaded dolomite (magnesian limestone),
- biological through microorganisms

Filter velocity: $\quad v_{F}=Q / A_{F}$ (Inflow related to the surface area)

Slow sand filter

Sterilization effect 3-4 decimals reduction, precondition TSS in feed inlet $<3-10 \mathrm{~g} / \mathrm{m}^{3}$.

Operation parameters for slow sand filter (Langsamsandfilter):
-Sand filter grain diameter $0.8-1.2 \mathrm{~mm}$

- Filter velocity (Filter-Geschwindigkeit) (related to the full cross section)
$10-20 \mathrm{~cm} / \mathrm{h}$
- Filter layer height (Filterschicht-Höhe) $0.4-1.0 \mathrm{~m}$
- Water level (Wasserüberstand)
$0.8-1.2$ m
- Retention time (Verweilzeit) in filter ca. 10 h

Open rapid sand filter

Base area $B \leq 3, L \leq 20 m, v_{f}=\mathbf{4 - 7} \mathrm{m} / \mathrm{h}$

Filtration and backwashing process - open rapid sand filter -

Backwashing process

Dimensioning of a rapid sand filter

Filter grain size:

- diameter $\quad 0.8-1.2 \mathrm{~mm}$

Filter velocity:

- open rapid sand filter
- closed rapid sand filter

Filter bed height (Filterbetthöhe), for a retention time of with minimal height

4-7m/h
$>10 \mathrm{~m} / \mathrm{h}$
10-15 min 0.8 m

Clear = Backwashing (Rückspülen) with water and air amounts of

- water
- air
$3-4 \mathrm{I} /\left(\mathrm{s} \cdot \mathrm{m}^{2}\right)$

$$
25 \text { I/(s • m²) }
$$

duration 10-30 min backwashing, when
Filter resistance

- open rapid sand filter
- closed rapid sand filter
$>1 \mathrm{mWS}$
$>10 \mathrm{mWS}$
Filter velocity
- water
- air

Filtration and backwashing process in a closed rapid sand filter (pressurised filter)

Grain size 0.8 - $1.2 \mathrm{~mm}, \mathrm{H} \geq 0.8 \mathrm{~m}, \mathrm{t}_{\mathrm{R}}=10-15 \mathrm{~min}, \mathrm{v}_{\mathrm{F}} \geq 10 \mathrm{~m}$

Filtration

Multilayer filter: spatial filter, hydro-anthracite and quartz, $\mathrm{v}_{\mathrm{F}}=10-20 \mathrm{~m} / \mathrm{h}$

Activated carbon adsorption: (W 239, 240)

Disinfection: chlorine, ozone, chlorine dioxide, hydrogen peroxide, UV radiation

Deacidification: Filtration through lime, dolomitic filter material (magnesium lime), dosage of hydroxides (limestone slurry, caustic soda solution, sodium carbonate, related with the adding of hardness and pH increase)

Softening: Calcium-ion precipitation, dosage of lime, caustic soda solution, sodium carbonate for the purpose of precipitation, ion exchange

Rohwasseranalyse - Auszug (Hannover, 1996)

Raw water October till December 1996	Units of measurement	Limit value according to TrinkwV. (Filtered water)	Minimum value	Mean value	Maximum value
Odour	qualitative	-	$\mathrm{H}_{2} \mathrm{~S}$	$\mathrm{H}_{2} \mathrm{~S}$	$\mathrm{H}_{2} \mathrm{~S}$
Coloring	qualitative	-	yellowish	yellowish	yellowish
Turbidity	qualitative	-	without	without	low
Water temperature	${ }^{\circ} \mathrm{C}$	25	9,2	9,3	9,5
pH-value at specific water temp.	-	$>6,5-<9,5$	6,44	6,57	6,70
Permanent hardness	${ }^{\circ} \mathrm{d}$	-	10,8	11,0	11,2
Temporary hardness	${ }^{\circ} \mathrm{d}$	-	3,3	3,4	3,5
Calcium	mg / I	400	71	72	73
Magnesium	mg / l	50	3,8	4,2	4,6
Iron, total	mg / l	0,2	14,5	15,0	15,6
Iron (Fe ${ }^{2+}$)	mg / l	-	14,5	15,0	15,6
Manganese	mg / l	0,05	1,10	1,16	1,20
Ammonium	mg / l	0,5	0,71	0,75	0,78
Nitrite	mg / l	0,1	$<0,01$	$<0,01$	$<0,01$
Nitrate	mg / l	50	0,3	0,5	0,6
org. carbon, DOC	mg / l	-	9,1	9,6	10,5
Permanganate-Index	mg / l	-	26,4	28,9	30,1
Oxidizabilty	mg / l	5	6,68	7,30	7,62

Process Schema of water treatment in Ground Water Works Fuhrberg, city of Hannover

Withdrawal
\downarrow
Mixing in mixing/storage tank

Cascade aeration, deacidification, O_{2}-improvement, $\mathrm{H}_{2} \mathrm{~S}$-removal \downarrow
$\mathrm{H}_{2} \mathrm{O}_{2}$ dosage, humates destruction, residue oxidation accelator (flocculation/sedimentation)
\downarrow

Process Schema of water treatment in Ground Water Works Fuhrberg, city of Hannover

KMnO_{4} dosage, oxidation for demanganazing
\downarrow
Filtration (residual iron removal, nitrification, demanganizing in an open rapid sand filter, single-layer, quartz $0.7-1.2 \mathrm{~mm}$, backwashing at nights with $70-90 \mathrm{~m} / \mathrm{h}$

pH -value adjustement for lime-carbonic acid-balance (NaOH) to $\mathrm{pH} 7.5-7.7$ and $\mathrm{PO}_{4}-\mathrm{P}$ dosage as inhibitor

Lecture 5

Part b) Water Storage

System components and design

The main components of a water supply plant are:
Water catchment: (Wassergewinnung) spring catchment, border spring, groundwater catchment with vertical filtration well (Vertikalfilterbrunnen), bore well, subsurface drain, horizontal filtration well (Horizontalfilterbrunnen), surface water catchment with reservoir, sea water catchment, river water catchment.

Water treatment: (Wasseraufbereitung)
oxidation, ozonation, flocculation (Flockung), filtration (Filterung), deacidification, deferrisation, demanganisation, water softening, desalination, disinfection.

Water pumpage: (Wasserförderung) pumps, engines with electric drive.

Water storage: (Wasserspeicherung)
elevated earth tank (Erdhochbehälter), water tower, underground tank (Tiefbehälter), collection tank, pressure tank, fire water tank.

Water distribution: (Wasserverteilung)
public plant with interconnection pipeline, Long-distance pipeline, supply pipeline, plant with connecting pipeline, consumption pipeline.

Requirements of a water supply system

A water supply plant (Wasserversorgungsanlage) must provide drinking water

- in sufficient quantity
- of flawless quality
- at all times with sufficient pressure
- everywhere in the area of supply (Versorgungsgebiet).

Capital investment percentages of a water supply infrastructure:

- water catchment:

2-6 \%

- water treatment:

1-3 \%

- water pumpage:

9-11\%

- water storage:

6-15 \%

- water distribution:

65-82 \%

Tasks and requirements of water storage

Tasks:

- storage of drinking water
- compensation of consumption peaks
- Bridgeover of operation disturbances (Betriebsstörung)
- pressure stabilisation
- fire fighting water
- reserve volume for pumps
- reserve capacity for filter flushing

Requirements:

- ensure water quality
- stable and permanent service
- reliable and efficient operation
- esthetic construction
- conforming to standard regulations

Types of water storage tanks

The most common types of water tanks (Wasserspeicher) can be differentiated according to different criteria, e.g. into:

- pressure
- altitude (Höhenlage)
- position to the supply network
- structural shape

Differentiation according to the position to the supply area

Run-through tanks (Durchlaufbehälter)
Run-through tanks are positioned between the water catchment and supplying area.

Advantages: - pressure fluctuations in the supply area are small

- the stored water is always exchanged and thereby held fresh

Disadvantages: - the entire water must flow through the container and must accordingly be lifted on to the tank height

- the supply network is feeded from just one side
- low supply security (Versorgunssicherheit)

Location of pumping stations, watertanks and local piping networks

Run-through tank (RTT)
Height of energy loss

Differentiation according to the position to the supply area

Counter tanks (Gegenbehälter)

Counter tanks are positioned, seen from the inlet side, behind the supply area.

Advantages: - only the not needed water of the supplying area has to be pumped into the tank. Thus the tank can be constructed smaller

- the supply network is fed from 2 sides. This leads to a smaller loss of pressure (low flow rates)
- higher operation-security (Betriebssicherheit)

Disadvantages: - Water renewal in the tank is lower, possibly longer stagnation

Location of pumping stations, watertanks and local piping networks

Counter Tank (CT)
Pressure
T——— gradient while elevated tank is beeing feeded CT

Location of pumping stations, watertanks and local piping networks

Center of gravity tank (Schwerpunktbehälter)

If topographic conditions allow a suitable location or a water tower is provided, the water tank can be built near or in the centre of the supply area. This leads to a shorter piping network, a constant supply pressure and less pressure losses.
\rightarrow can be implemented rarely

Differentiation according to the altitude

Water tanks can be classified into underground and elevated tanks, depending on the relative altitude to the supply area.

Underground tanks (Tiefbehälter)

The water level in underground tanks lies beneath the supply area. They are positioned in front of the supply area (in flow direction) and behind the water treatment plant (Aufbereitungsanlage). The water has to be pumped to the necessary pressure height in order to feed the supply network (Tank pumping station (Pumpwerk)).

Differentiation according to the altitude

Elevated tanks (Hochbehälter)

Elevated tanks guarantee the supply pressure, their water level (Wasserspiegel) lies above the supply area. The stored water is fed into the piping network with a gravity gradient. Their storage volume increases the supply security.

Topographic conditions determine whether elevated earth tanks or water towers have to be constructed.

Differentiation according to the altitude

Several supply areas

Elevated Tank B

Recommended pressure ratios in water pipe nets (W 403)

Location of the tanks in relation to the groundlevel

Above groundlevel
Partly above the groundlevel

Beneath the groundlevel

Squaretank $2 \cdot 1000$ m3 usable capacity, covered with soil

Cross section ceilings downward gradient 2% Schnitt G-H

Prof. Dr.-Ing. K.-H. Rosenwinkel, Sanitary Engineering, SS 12

Squaretank $2 \cdot 1000$ m3 usable capacity, covered with soil

Layout of ground tanks

Square form

One-chamber tanks

Three-chamber tank

Two-chamber tanks

Layout of ground tanks

Circle form:

Storage volume

Consumption behavior of a locality with 865 inhabitants during one week in February

Storage volume

Leibniz
Universität
Hannover

Consumption behavior of a town with 5.845 inhabitants on one Saturday

Storage volume

Consumption behavior of the same town on a weekday

Storage volume

Leibniz

Increase of the consumption in a city during a fire extinction

Schematic segmentation of a reservoir volume

Segmentation of a reservoire volume as a function of the daily withdrawal

Standard value for the effective storage content of waterreservoirs

Future highest daily demand $\mathbf{Q}_{\mathbf{d}, \text { max }}$ $\left[\mathbf{m}^{3}\right]$	Effective storage content of underground-reservoirs in $\%$ of $\mathbf{Q}_{\mathrm{d}, \text { max }}$	Effective storage content of water towers in \% of $\mathbf{Q}_{\mathrm{d}, \text { max }}$
≤ 1000	100	35
≤ 2000	100	25
1000 bis 4000	$100-80$	25
2000 bis 4000	80	25
>4000	80 bis 30	20

Storage volume

$$
V_{\text {st. }}=V_{\text {fluct. }}+\text { fire reserve }+\mathbf{2 0} \% \text { safety margin (Sicherheitszuschlag) }
$$

Type of sypply area	Fire reserve for underground- reservoirs $\left[\mathbf{m}^{\mathbf{3}}\right]$	Fire reserve for water towers $\left[\mathbf{m}^{\mathbf{3}}\right]$
Village- and residential area	100 bis 200	75 bis 100
Trade- and industrial area	200 bis 400	150

Exercise: Reservoir design

For the design of a drinking water reservoir it is necessary to determine the storage volume. Therefore the fluctuating quantity of water is to be determined

Given:

$\begin{array}{ll}\text { Discharge from reservoir } & 02 \mathrm{am}-05 \mathrm{am} \\ & 05 \mathrm{am}-11 \mathrm{am} \\ & \text { per hour } 1 \% \text { of } \max Q_{d} \\ & 11 \mathrm{am}-06 \mathrm{pm} \\ & \text { per hour } 7 \% \text { of } \max Q_{d} \\ 06 \mathrm{pm}-12 \mathrm{pm} & \text { per hour } 3 \% \text { of } \max Q_{d}\end{array}$
$\max Q_{d}=16.500 \mathrm{~m}^{3} / \mathrm{d}$

Pumping time for filling the high reservoir: $10 \mathrm{pm}-8$ am

Exercise: Reservoir design

Time	Hourly consumption	Intake	Deficit (-)/ Surplus $(+)$	Sum: Deficits + Surplusses
	$\%$	$\%$	$\%$	$\%$
$0-1$		10	10	10
$1-2$		10	10	20
$2-3$	1	10	9	29
$3-4$	1	10	9	38
$4-5$	1	10	9	47
$5-6$	5	10	5	52
$6-7$	5	10	5	57
$7-8$	5	10	5	62
$8-9$	5		-5	5
$9-10$	5		-5	52
$10-11$	5		-5	47
$11-12$	7		-7	40
$12-13$	7		-7	33
$13-14$	7		-7	26
$14-15$	7		-7	19
$15-16$	7		-7	12
$16-17$	7		-7	5
$17-18$	7		-7	-2
$18-19$	3		-3	-5
$19-20$	3		-3	-8
$20-21$	3		-3	-11
$21-22$	3		-3	-14
$22-23$	3		10	7
$23-24$	3	10	7	-1
24 Std.	100	100	0	0
2				

Required storage volume

Cumulative line for continuous intake for $\mathbf{2 4 h}$

Required storage volume

Cumulative line for intermittent intake for 12 h

Elevated tank Lindener Berg / Hannover

Elevated tank Lindener Berg / Hannover

Technical data of the elevated tank Lindener Berg

Tanktype:
Overall dimension:
Number of chambers:
Total storage content:
Effective filling height:
Level range:

Counter tank
$77.0 \times 39.0 \times 9.5 \mathrm{~m}$
2
13,200 m ${ }^{3}$
7.7 m
89.3 ... 97.0 m a.s.l.

