Class on Solid Waste Management

12 Contaminated sites and polluted areas

Solid Waste Management Dr.-Ing. Dirk Weichgrebe

ГЦН

Contaminated sites/ Brownfields / Polluted areas - Definitions

• Harmful changes of the soil:

Impairments of the soil functions which **are capable of producing** hazards, considerable disadvantages or heavy annoyances

- **Potentially contaminated areas/abandoned polluted areas:** Areas where hazardous changes of the soil are **suspected**
- Contaminated sites:
 - Abandoned waste disposal plants and other premises where waste has been treated, stored, or deposited (= old deposits),
 - Premises of closed plants and other premises where environmentallypolluting substances have been handled (= abandoned industrial sites, such as gas works, ammunition factories, military sites, areas with high air emissions, pesticides, leakages, asbestos production),

which may **cause** hazards for individuals or society as a whole through dangerous changes of the soil.

Solid Waste Management Dr.-Ing. Dirk Weichgrebe

Register of contaminated sites in Germany 2005

Characteristic [1]	State	Site suspected to be brownfields	Old deposits (OD)	Abandoned Industrial sites (AS)	Abandoned polluted areas	Sanitation completed	Hazard Assessment completed	Abandoned polluted areas being sanitised	Monitoring
Baden-Württemberg	12/2003	10,118	2,644	7,474	758	878	6,278	562	71
Bavaria	03/2003	13,930	10,193	3,737	1,449	727	3,042	1,427	22
Berlin	02/2004	2,711	857	2,322	439	49	n.d.	69	54
Brandenburg	12/2003	20,080	6,703	13,377	959	2,24	n.d.	59	309
Bremen	06/2003	2,965	55	2,910	101	307	499	56	62
Hamburg	01/2004	2,317	420	1,933	236	347	3,070	54	34
Hesse	03/2004	666	316	350	444	228	582	659	125
Mecklenburg–West. Pom	12/2003	8,546	3,648	4,898	642	742	596	256	355
Lower Saxony	02/2004	39,876	8,976	30,900	884	582	965	222	80
North Rhine-Westphalia	12/2001	42,868	18,337	24,642	1,917	2,90	8,915	1,843	1,58
Rhineland Palatinate	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
Saarland	03/2004	1,807	1,671	136	412	26	588	28	139
Saxony	04/2003	30,073	7,655	22,418	1,63	2,84	7,828	1,15	1,54
Saxony-Anhalt	11/2003	19,443	5,985	13,958	104	617	1,470	44	4
Schleswig-Holstein	12/2002	18,508	2,412	16,096	162	624	1,726	86	n.d.
Thuringia	11/2003	16,650	5,556	11,094	458	489	1,612	109	9
Germany		230,558	75,428	156,245	10,60	13,60	37,171	6,63	4,38

Solid Waste Management Dr.-Ing. Dirk Weichgrebe

l eibniz

Universität

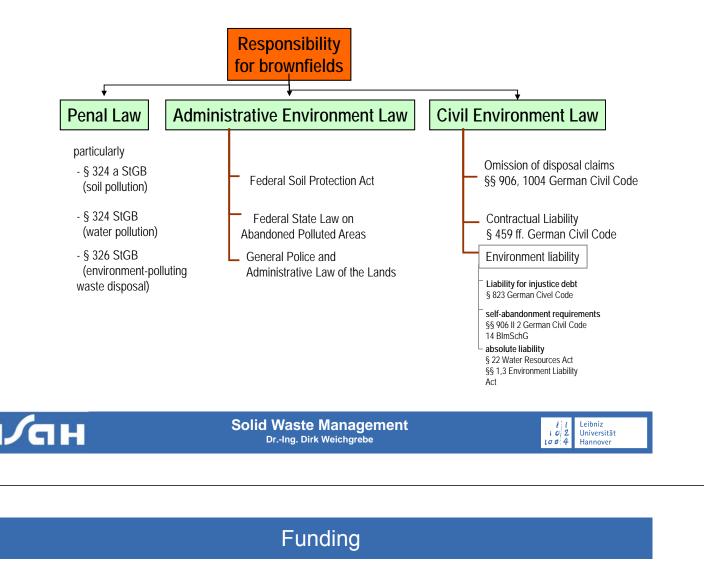
Hannover

Register of contaminated sites in Germany 2011

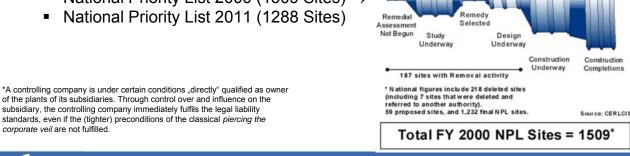
Characteristic [1]	State	Site suspected to be brownfields	Old deposits (OD)	Abandoned Industrial sites (AS)	Abandoned polluted areas	Sanitation completed	Hazard Assessment completed	Abandoned polluted areas being sanitised	Monitoring
Baden-Württemberg	12/2009	14.472	1.968	12.504	2.124	2.445	14.312	635	413
Bavaria	03/2010	16.545	11.450	5.095	1.084	1.490	4.590	1.006	78
Berlin	07/2010	4.978	1.142	4.468	911	187	n.d.	68	75
Brandenburg	06/2010	19.885	7.140	12.745	1.545	3.997	4.327	124	214
Bremen	06/2010	3.560	27	3.533	432	596	898	43	170
Hamburg	07/2010	1.876	272	1.623	519	429	3.024	135	139
Hesse	07/2010	1.044	554	490	424	812	1.624	181	40
Mecklenburg–West. Pom	12/2009	5.907	26.978	3.229	1.049	1.222	284	341	429
Lower Saxony	06/2010	99.783	9.399	90.384	2.948	1.478	4.095	360	325
North Rhine-Westphalia	01/2010	75.370	30.493	44.877	n.d.	6.158	17.969	n.d.	n.d.
Rhineland Palatinate	07/2010	12.408	11.947	461	294	127	6.305	167	57
Saarland	05/2010	1.977	1.650	323	456	156	379	35	64
Saxony	04/2010	20.018	6.799	13.219	667	2.836	6.474	468	1.393
Saxony-Anhalt	05/2010	17.210	5.248	11.962	173	1.436	3.271	74	27
Schleswig-Holstein	12/2009	13.682	2.092	11.590	311	951	2.585	69	42
Thuringia	03/2010	13.583	4.072	9.511	814	739	4.241	234	70
Germany	02/2011	322.298	121.231	226.014	13.751	25.059	74.378	3.940	3.536

Solid Waste Management Dr.-Ing. Dirk Weichgrebe

1 1 Leibniz 102 Universität 1004 Hannover


Brownfields – Legal Basis

- Federal Soil Protection Act BBodSchG, 1998 and Federal Soil Protection Act -BBodSchV of 12.07.1999
- According to the polluter-pays-principle, the following parties are obliged to precaution (§7 BBodSchG), liable and cost-responsible, and obliged to sanitation
 - first the disturber (liability for actions) being that natural or legal person which has caused the hazard
 - then the interrupter (liability for conditions) being the owner and proprietor of the actual command over an entity from which a hazard originates, as well as the former owner in case of selling after 01.03.1999, if they were aware or had to be aware hazardous pollutions (§ 4 BBodSchG)
 - thus, liability of: former operators, (former)/current owner of the property, perhaps the waste conveyors, waste producers
- If the originator cannot be held liable (bankrupt; not existent anymore) or in case of sovereign responsibility (present permission; lacking control):
 → Principle of common burden
- According to § 9 BBodSchG, the responsible bodies are generally the federal Lands; the owners are obliged to participation and sufferance



Responsiblities for Abandoned Polluted Areas

- Polluter-pays-principle (see Legal Basis)
- Alternatively: principle of common burden or group charges (responsible . branches)
- Licensing fees (NRW) or special waste fees (Lower Saxony) are unconstitutional;
- Taxes conceivable
- Cooperation models
 - Federal state and industry (Bavaria; Hesse);
 - Federal state and special waste union (Rhineland Palatinate)
 - Federal state and municipalities (Baden-Württemberg)
- USA: State Superfund* / Urban Sites Remedial Action Fund
 - Cooperation financing
 - National Priority List 2000 (1509 Sites) \rightarrow
 - National Priority List 2011 (1288 Sites)

50

corporate veil are not fulfilled.

Solid Waste Management Dr.-Ing. Dirk Weichgrebe

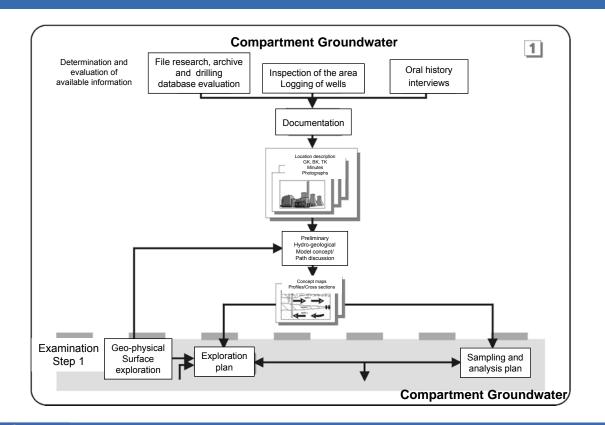
417

61

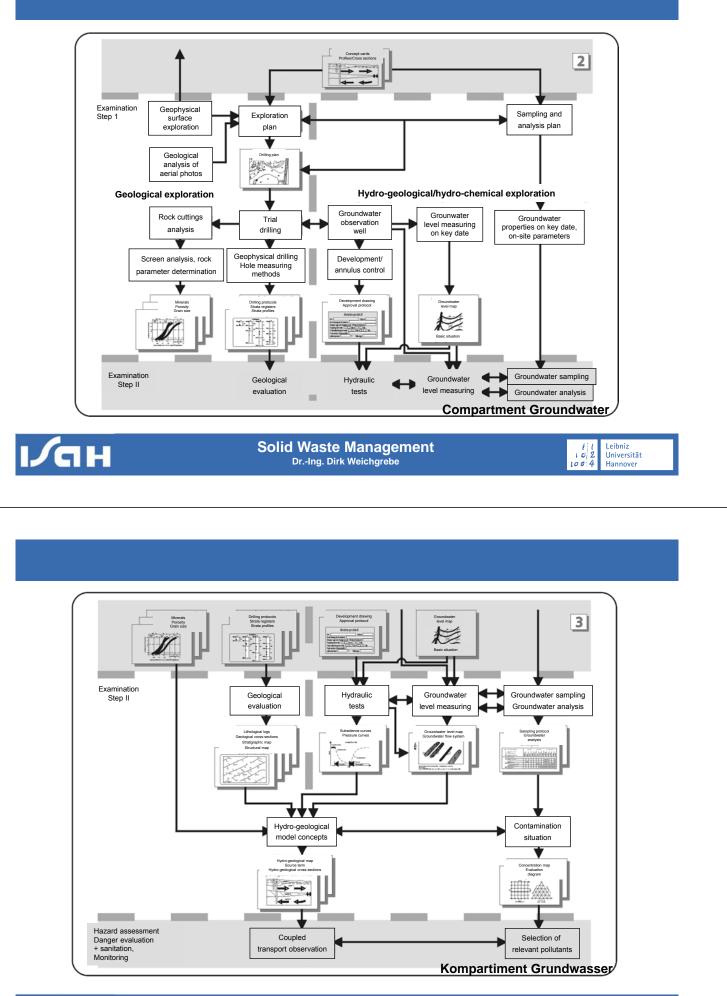
Affected compartments

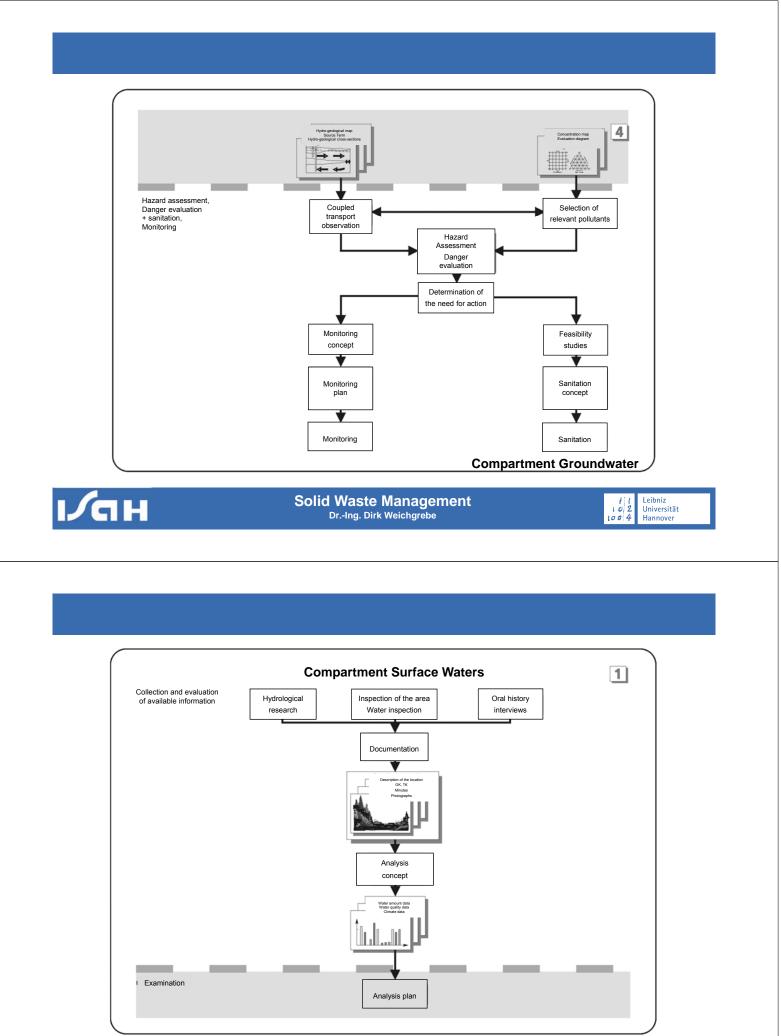
- groundwater
- surface waters
- soil

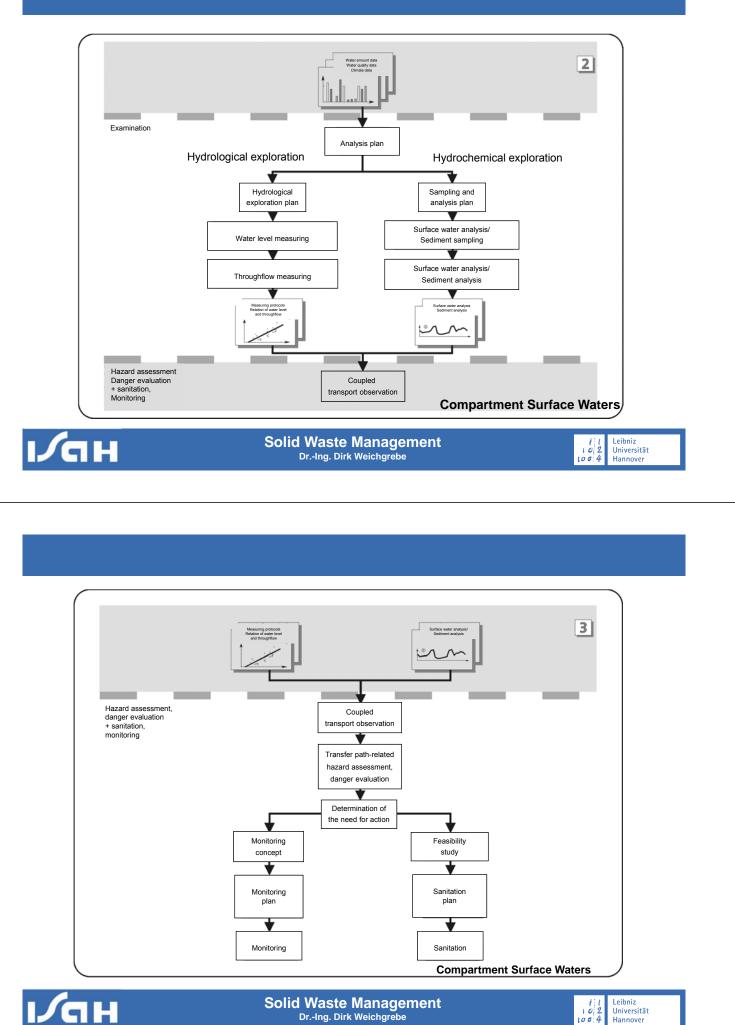
The compartment "air" is affected in only a very few cases of brownfields processing.

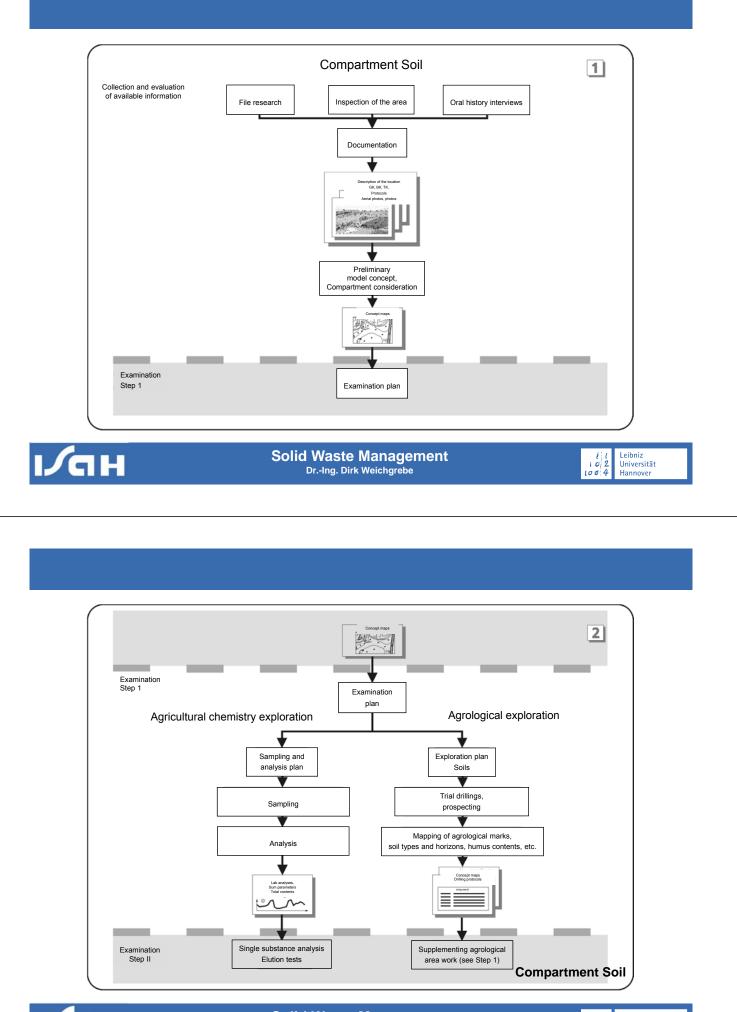


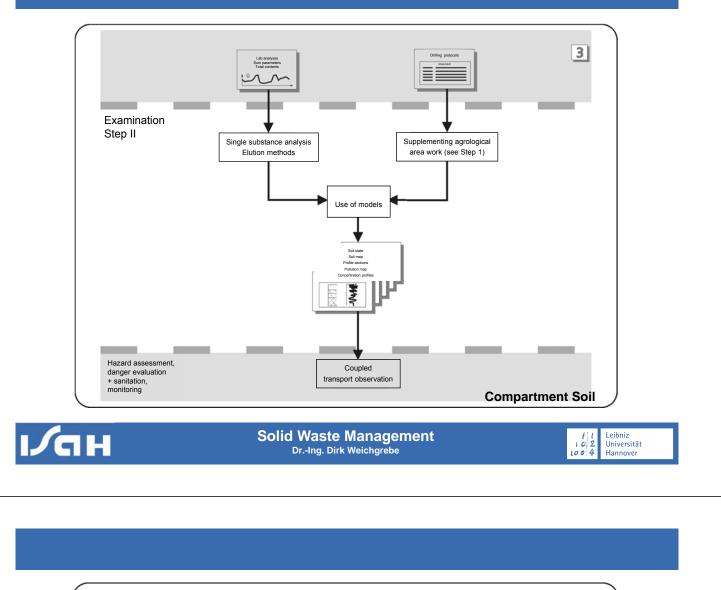
Open construction waste dump site

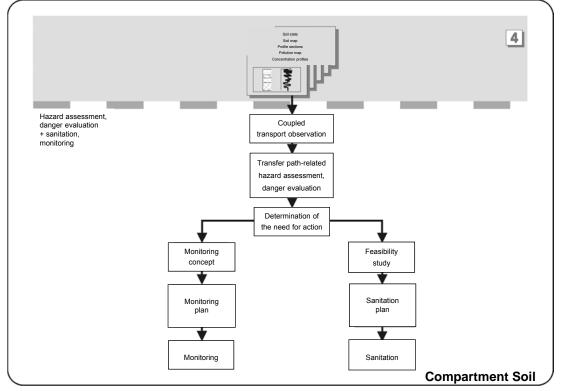

Solid Waste Management Dr.-Ing. Dirk Weichgrebe



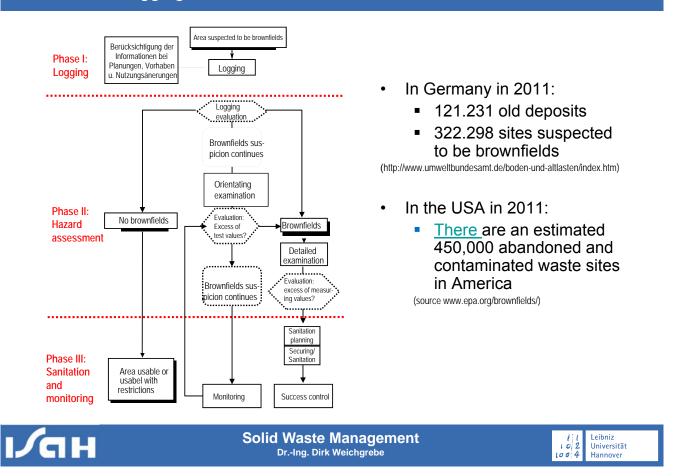







102 Universität Hannover

Ган



Flow Chart Logging - Evaluation - Sanitation according to SRU, 1990; LAGA, 1989; BBodSchV

Examples of sites suspected to be brownfields and possible relevant substances

• generally relevant substances and branch-specific substances

Branch	Typical pollutants
Dry cleaning	gasoline, benzene, dichloroethane, tetrachloroethane, trichloroethane, trichloroethene, trichloromethane
Hard coal mining, gas works, coking plants	ammonium, anthracene, arsenic, (asbestos), benzo(a)pyrene, benzene, lead, chromium, cyanides, ethylbenzene, fluorene, fluorene, cresol, mesitylene, mineral oil, naphthalene, PAH, phenole, acids, lyes, creosote, thiocyanate, toluol, xylol

- K_H or H distribution coefficient soil \leftrightarrow air
 - with
 - H_P Henry Constant [(Pa · L / mol]) p⁰ Saturation steam pressure [Pa]
 - S Water solubility [mol / L]

 $H_{P} = \frac{p^{\circ}}{S}$

In practical operation, pollutant concentrations are used rather than partial pressure, thus the Henry Constant in its dimensionless version:

with c_w and c_g concentration in the aqueous or gaseous phase;

- H Henry Constant [-],
- general gas constant [J / (mol · K)] R
- Temperature [K] Т
- Distribution coefficient K_D
 - K_{SG} Distribution coefficient

soil ↔ water

soil \leftrightarrow gaseous phase via medium water =

 $H_{P} = \frac{C_{G}}{C_{W}} = \frac{p^{\circ}}{S \cdot R \cdot}$

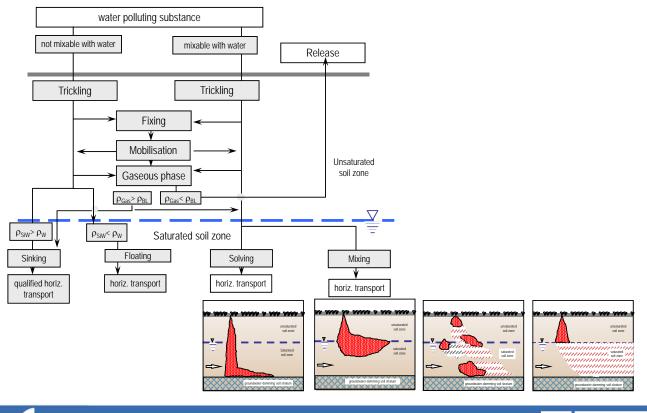
 p°

Leibniz

Universität

Hannover

102


H / K_D

 K_1

soil \leftrightarrow gaseous phase directly (not relevant with soil air extraction)

Solid Waste Management Dr.-Ing. Dirk Weichgrebe

Examination Planning according to the Migration Behaviour of Different Contaminants according to DARIMONT and LÜHR, 1985; verändert

Soil Samples and Analyses

Sampling depth according to BBodSchV, Appendix 1 for the effects soil – humans and soil – agricultural crops

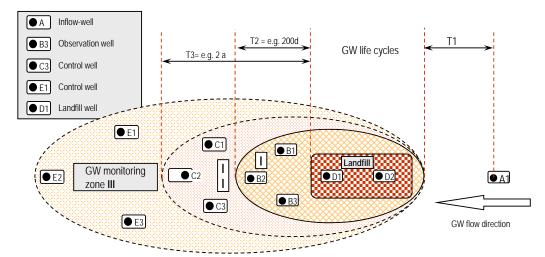
Effects	Utilisation	Sampling depth		
Soil - Humans	Playgrounds, residential area	0-10 cm ¹ 10-35 cm ²		
Soil – Humans	Playground, residential area	0-10 cm ¹ 10-35 cm ²		
	Park or recreation centres	0-10 cm ¹		
	Industrial and commercial premises	0-10 cm ¹		
Soil – Agricultural crops	Grassland	0-30 cm ³ 30-60 cm		
	Agriculture, kitchen garden	0-10 cm ⁴ 10-30 cm		

1) Contact range for oral and dermal pollutant intake; additionally 0-2 cm if the respirational intake path is relevant.

2) 0-35 cm: average thickness of applied soil layers, also the maximum depth which children can reach.

3) Treatment horizon.

4) Primary root area.

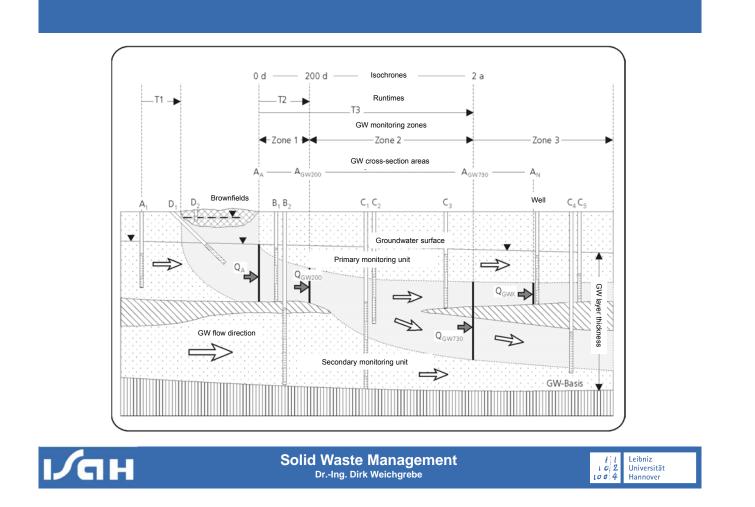

- Sampling horizontally or with disturbed horizons in layers, representative up to ca. 30 cm.
- Soil analysis according to Appendix 1 of the BBodSchV
- Total error of the analysis result (S= Variance):

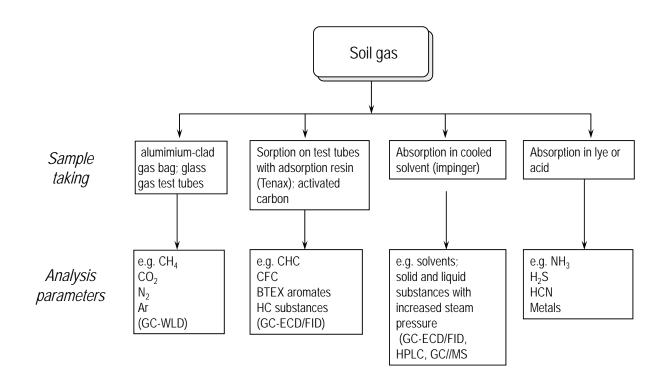
 $s_{total}^2 = s_{Sampling}^2 + s_{Sample processing}^2 + s_{Measuring}^2$

Solid Waste Management Dr.-Ing. Dirk Weichgrebe

GW Monitoring Concept on Landfills according to Dörrhöfer, 1993

- Hydro-geological model concept
 - Groundwater flow directions and potential distributions,
 - Free and stretched groundwater pressures on maps
 - Relative pressure differences between hydro-stratigraphic units
 - Hydraulic connections between hydro-stratigraphic units
 - Distance velocities (v_a = k_f * i / n) (with n = effective hollow space ratio); GW flow amounts
 - Vertical hydraulic gradients to determine the position of the GW new production areas or GW discharge areas



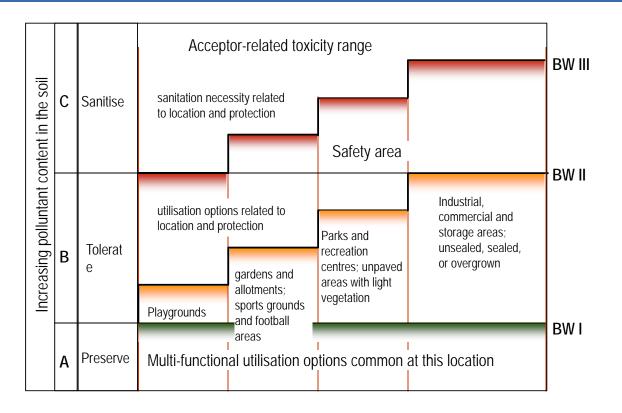

Leibniz

Universität

Hannover

Analysis Scheme for Soil Gas with Offline Measuring according RUMPP et al., 1996

Principal Parameters


- Boron in the groundwater as indication of domestic waste
- Sulphate in the groundwater as indication of building rubble
- AOX in the groundwater as indication of special waste
- org. Cl in the gas/soil air as indication of special waste
- CH₄ in the gas/soil air as indication of biologically anaerobically convertible organic substances (e.g. domestic waste)

Solid Waste Management Dr.-Ing. Dirk Weichgrebe

Stage Model of the Utilisation of Urban Soils with Pollutant Contents according Lühr/ Eikmann/ Kloke, 1994

Test and Measurement Values (Appendix 2 BBodSchV, 1999)

	Humans	Soil \Rightarrow Agricultural plant					
	Test values	[mg/kg DM]		[mg/kg DM]	[mg/kg DM]	[mg/kg DM]
Substance	Playgrounds	Residen- tial areas	Parks and rec- reational cen- tres	Industrial and commercial pre- mises	Agriculture/ kitchen garden 0-30 cm depth	Grassland Plant quality Measurement values 0-10 cm	Grassland Growth of agricultural crops 0-10 cm
Arsenic	25	50	125	140	200 test value	50	0,4 test value
Lead	200	400	1 000	2000	0,1 test value	1.200	
Cadmium	10 ¹	20 ¹	50	60	0,04 / 0,1 measure	20	
Cyanide	50	50	50	100			
Chromium	200	400	1 000	1000			
Copper						1.300 / 200(sheep)	1 test value
Nickel	70	140	350	900		1.900	1,5 test value
Mercury	10	20	50	80	5 test value	2	2 test value
Thallium					0,1 test value	15	
Aldrin	2	4	10	-			
Benzo(a)pyrene	2	4	10	12	1 test value		
DDT	40	80	200	-			
Hexachlorobenzene	4	8	20	200			
Hexachlorocyclohexan (HCH- mixture or b HCH)	5	10	25	400			
Pentachlorophenol	50	100	250	250			
Polychl. Biphenyle (PCB6) 2	0,4	0,8	2	40		0,2	

1) In gardens and allotments which are used both as playing area for children and the growing of food

plants, the test value to be used for cadmium is 2,0 mg/kg DM

2) If the total contents of PCB area determined, the gained average values must be divided by the factor 5.

Measurement value for dioxin and furan (ng i-TEQ/kg DM)

PCDD / PCDF 100 1.000 1.000

Solid Waste Management Dr.-Ing. Dirk Weichgrebe

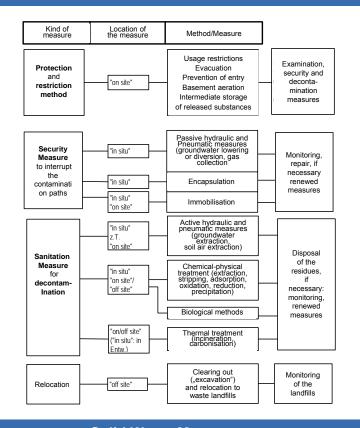
10.000

Contamination Ways Methods and MScales for the Derivation of the Test and Measurement Values according to BBodSchV (BAnz. of 28. August 1999

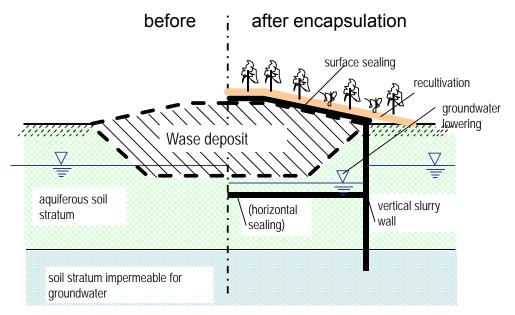
- **oral** = intake as food via the mouth
 - direct intake via the **soil** with children; 0,5 g/d soil to the age of 6
 - indirect intake via food (ingestion) (Food Reference Values of the German Health Authority; intake via drinking water of 2 I per day for adults and 1 I per 10kg body weight for children)
- **Respiratory** = intake via breathing
 - 20 m³/d **respiratory volume** for adults and 5 m³ for small children
 - **Calculation** of the emission concentrations from emissions (chimneys, soil air) with dilution factors (for chimneys: distribution model) or **emission measuring**
 - Comparison of emission concentrations with (background) values in clean air and urban air areas and with MIK values of the VDI or alternatively with 1/100 of the MAC values (maximum acceptable concentrations); cf. TRGS 900 (Technical Regulations on Hazardous Substances) or TRC values (Technical Reference Concentrations) for carcinogenic substances (no MAC value) (TRCS 102)
- dermal = intake via the skin
- Combination effects
 - Insights limited. Alternative for MAC values for several substances: sum of the exhaustion quotas ≤ 1.

Evaluation Criteria

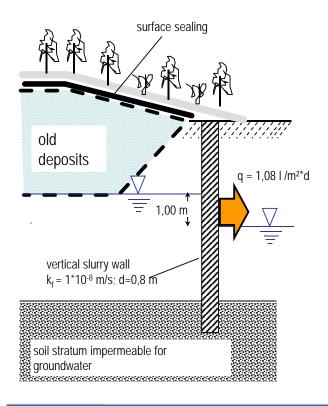
- LOAEL lowest observed adverse effect level = the lowest dose or concentration of a given hazardous substance at which (in the present study) adverse effects were still observed.
- NOAEL no observed adverse effect level = the highest dose or concentration of a given hazardous substance at which no adverse effects were observed anymore.
- TRD or ADI = tolerable reabsorbed doses. Ideal if these values are directly available from experiences with humans (human data); otherwise extrapolation of data from animal experiments;
 Safety factor (e.g. 100) : NOAEL = TRD

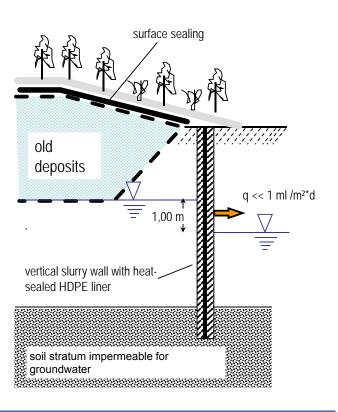

Safety factor (e.g.100) · NOAEL = TRD

Solid Waste Management Dr.-Ing. Dirk Weichgrebe


Securing and Sanitation of Abandoned Polluted Areas

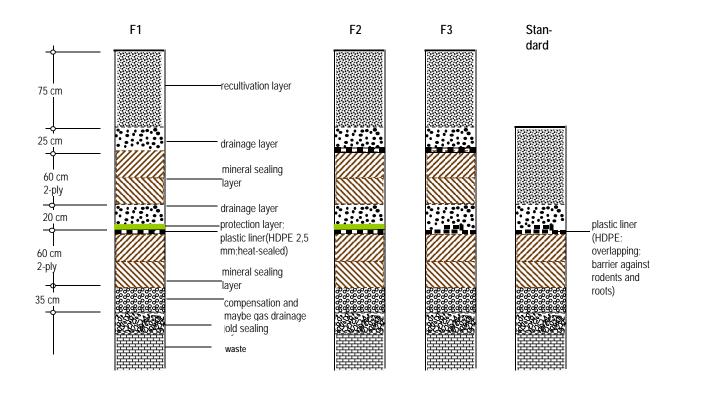
Encapsulation of Old Deposits


• With slurry wall encapsulation, the inside groundwater level must always be kept lower than the outside one



Solid Waste Management Dr.-Ing. Dirk Weichgrebe

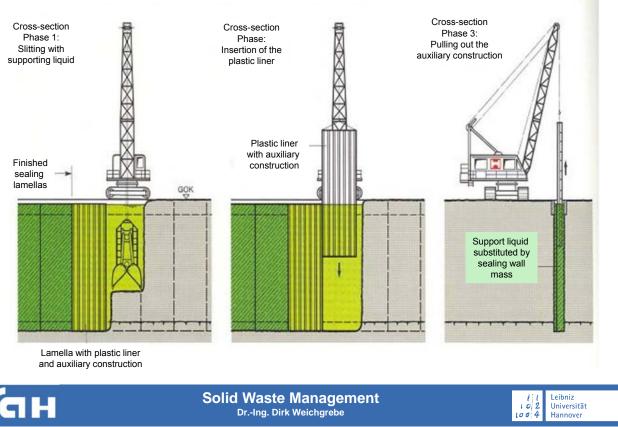
Permeation Rates through Slurry Walls for Damming with or without HDPE Liner according to SRU.1989. S. 133



Surface Sealing Systems at the Landfill in Hamburg-Georgswerder

Solid Waste Management Dr.-Ing. Dirk Weichgrebe

t t Leibniz to 2 Universität to 6 4 Hannover


Vertical shielding systems and experience values

Principle	Sealing wall system	Soils	Material	Depth [m]	Thickness [m]	k-value [m/s]
	slurry wall one-phase method		bentonite-cement- suspension with/without filler	ca. 35	0.5 - 1.5	< 5 · 10 ⁻¹⁰
Excavation	Slurry wall two-phase method	application restricted for turf/humic	bentonite-cement- suspensions, soil cement	> 50	0.4 - 1.5	< 1 · 10 ⁻¹⁰
and filling in of sealing material	d filling in of Slurry wall	acids	bentonite-cement- suspensions, plastic liner (e.g. PEHD)	ca. 35	> 0.6	see above
	Contiguous pile wall	no restrictions with tubed cuttings	Soil cement	ca. 20	0.6 - 0.8	< 1 · 10 ⁻¹⁰
Displacement of the in-situe soil and filling	Thin diaphragm wall	pileable or	bentonite-cement- suspensions with filler	ca. 25	0.07 - 0.20	< 1 · 10 ⁻¹⁰
in of sealing	Sheet pile	compactable	Steel	ca. 25	0.01 - 0.02	-
material	Piled slurry wall		Soil cement	15 - 20	0.4	< 1 · 10 ⁻⁹
Reduction of the	Injection wall	injectable	Cement, clay- cement suspensions, silica gels	> 100	adjustable	< 1 · 10 ⁻⁸
permeability of the in-situ soil	High-pressure injection wall	also in very fine grained ones	bentonite-cement- suspensions with/without filler	> 100	0.2 - 0.8	< 1 · 10 ⁻¹⁰
	freezing wall		Freezing plant liquid nitrogen	> 100	> 0.8 - 1.0	-

Securing through Immobilisation

- Compacting; ramming
 - reduction of the elutable surfaces
- Stabilisation
 - chemical reaction
- Encapsulation, enclosing
- Fixation
- Vitrification
 - enclosing with glass (radioactive waste
- Glazing
 - burning into clay (harbour silt; sewage sludge)

Hydraulic Measures

The targets of hydraulic measures: prevention/reduction of further contamination of the (ground) water through:

- Groundwater extraction and treatment underflow an old deposit
- Leachate extraction and treatment through the drilling of well in a pit landfill with leachate damming
- Drainage of a deposit through which groundwater flows through lowering of the groundwater level (if need be, in a "sealing crock"
- Gallery of extraction well to revert or divert the original groundwater flow direction to protect the groundwater usage
- Purposeful extraction/disposal of liquid pollutants such as oil at the groundwater surface or CHCs (heavier than water) at the bottom of the aquiferous stratum

Solid Waste Management Dr.-Ing. Dirk Weichgrebe

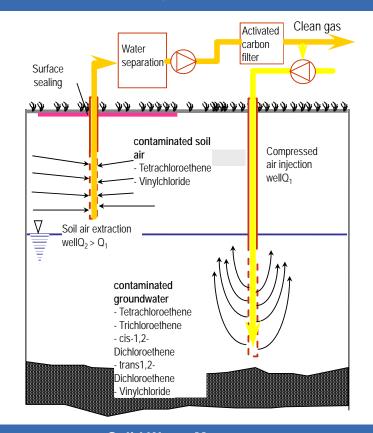
Pneumatic Measures

Pneumatic measures with soil air extraction to collect and decontaminate highly volatile gaseous pollutants:

- Landfill gas extraction (at ca. 99 Vol.-% CO₂ and CH₄)
 - prevention of explosion risks (explosion at 5-14 Vol.-% CH₄) and danger of suffocation
 - toxicological dangers caused by trace substances
 - particularly in danger are buildings near or on landfills, especially with upper sealing of the landfill and with thick surface soils. Sanitation through:
 - active extraction of the landfill for the (partial) reversal of these migration paths, possibly with thermal treatment
 - reduction of gas concentrations under building baseplates and cellars, interruption of gas migration through gas separation ditches, injection of fresh air under buildings or extraction from below building basements

Stripping of organic impurities

 injection of air or steam (for substances with an increased boiling range, such as CFC, PAHs, and phenoles) from the bottom groundwater



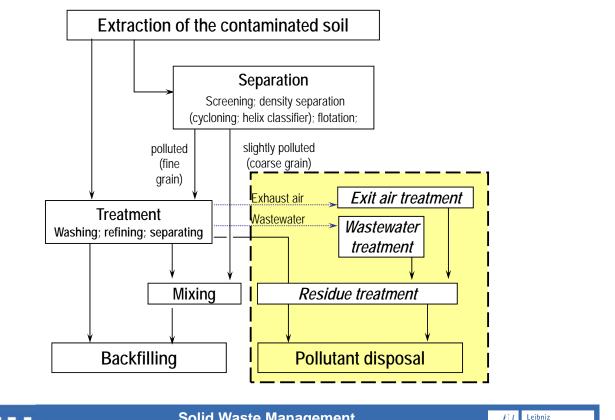
l eibniz

Universität

Hannover

Pneumatic Measures - In-Situ Stripping of Contaminations in Groundwater and Soil Air

Solid Waste Management Dr.-Ing. Dirk Weichgrebe


Chemico-Physical Measures – Extraction and Scrubbing Methods

Methods	Extractants/ Addi- tives/Energy input	Separation of the soil from the pollutant- extractant mixture	Pollutant suitability	Process agent processing	Through put t/h	Mobility degree
Scrubbing/ Wet classifica- tion (water-based)	H ₂ O/ weak acids, lyes; bio- degradable tensides, com- plexing agents; vibration screw	Multi-stage reactor, hy- dro-cyclone, corrugated sheet classifier	Heavy metals and cya- nides; cf. additives; mineral oil derivates, PCB	Flotation, floccula- tion/precipitation, stripping, adsorption	20-30	portable
	H ₂ O high-pressure water jet	Hydro-cyclone, sedimen- tation in the settling tank	Heavy metals, cya- nides, mineral oil deri- vates, PCB	Floccula- tion/precipitation, filtration	15 - 40	portable
	H ₂ O/demulgator; scrubbing screw	Washing and classifica- tion drum	Mineral oil derivates	Oil separator, re- verse flow turbo- floatation	20	portable
	H ₂ O; centrifugal scrubber	Sedimentation	Mineral oil derivates	Flotation, filtration	3,5	stationary
	H ₂ O; tensides, paddle scrubber	Sedimentation	not mentioned	not mentioned	10	mobile
	H ₂ O; additives; stirrer		not mentioned	not mentioned	3	mobile
	H ₂ O/ organic acids; wash- ing drum	Flotation	Heavy metals	Biological degrada- tion and transfer	not given	not men- tioned
Solvent extrac- tion	Pentane, petroleum ether; reverse flow extractor	Washing column, scrub- bing screw	Mineral oil derivates, possibly PCB	Distillation	10	mobile
Not water- based	Triethanolamine (TEA), reverse flow extractor	Scrubbing screw	Oily substances; com- pounds building com- plexes with triethano- lamine	Extraction, distilla- tion	not given	mobile
	Petroleum ether	Washing drum	Oils, tars, PCB	Distillation	10	mobile

Sanitation through Soil Scrubbing

Ган

Solid Waste Management Dr.-Ing. Dirk Weichgrebe

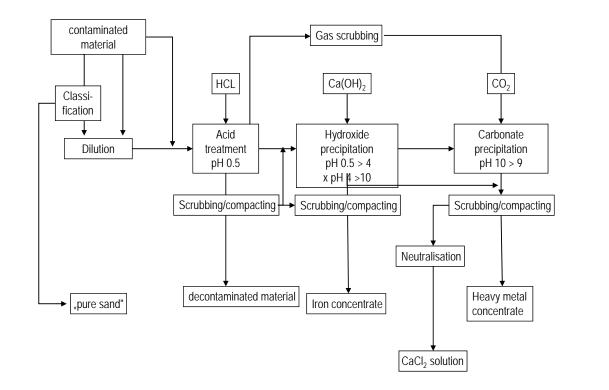
Division into High-Load and Low-Load Fractions

- Pollutants tend to adsorb at the surface
- Fine-grain materials are thus polluted more heavily

O / V ball $(m^2/m^3) = 6 / d (m)$

	Grain size (mm)	specific surface (m ² /g DS)
Fine grain, clay	< 0,002	150 - 250
Silty, claey loam	0,002 - 0,006	120 - 200
Silt loam	0,006 - 0,02	50 - 100
Sandy loam	0,02 - 0,06	10 - 40
Silt	0,002 - 0,06	5 - 20
Fine sand	0,063 - 0,1	0,03

- Screening or cycloning; e.g. METHA at Hamburg harbour; improved with scrubber
- Utilisation of the low-load material and disposal of the high-load material
- or decontamination and complete utilisation



102

Universität

Hannover

Heavy Metal Decontamination

Ган

Solid Waste Management Dr.-Ing. Dirk Weichgrebe

Chemico-Physical Methods - excluding Extraction and Scrubbing Methods

Treatment method	Treated medium	Place of treatment	Transport me- dium, process medium	Reagents, aux- iliary materials	Separation of cleaned flow and process flow	Restrictions, prob- lems
Adsorption	Stripped gas pha- ses, contami- nated water	on site	Activated carbon, molecular sieves, adsorber resins		Screen, convey- ance	Adsorption equilib- riums, disposal
lon exchange	Contaminated water	on site	lon exchanger resins	Buffering	Screen	only for certain ions
Membrane separation method	Contaminated li- quids	on site	Water		Membrane	Coating, suspended solids contents
Sedimentation; Flota- tion	Process water, thin slurry	on site	Water	Flocculation and flotation agents	Hydro-cyclone, Centrifuge, flota- tion	Grain size distribu- tion, disposal
Evaporation	Highly contami- nated water	on site	Water			Residue disposal
Precipitation, floccula- tion, colloid effect	Contaminated process water	on site	Water	Precipitation a- gent, auxiliary agents	Screen, filter, se- dimentation, flo- tation	Toxic by-products, disposal
Chemical conversion	Aqueous phases	on site	Water	Reagents	e.g. sedimenta- tion	
Oxidation, reduction, dehalogenisation	Oleaginous pha- ses (trickling oil)	on site; off site	If needed organic solvent	Metallic sodium, H ₂	Distillation, scrubbing	
	Soil	in situ	air	Ozone	Conveyance (compressed air)	Soil conditions, toxic metabolites

Solid Waste Management Dr.-Ing. Dirk Weichgrebe

Leibniz Universität

Hannover

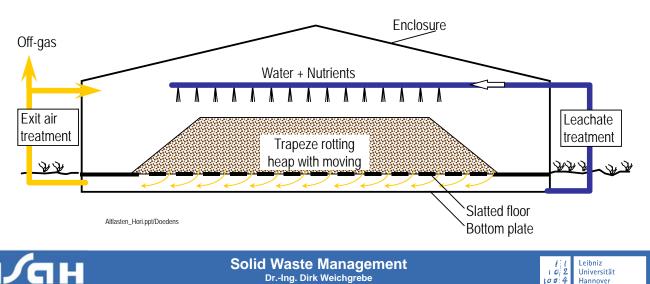
Pre-conditions:

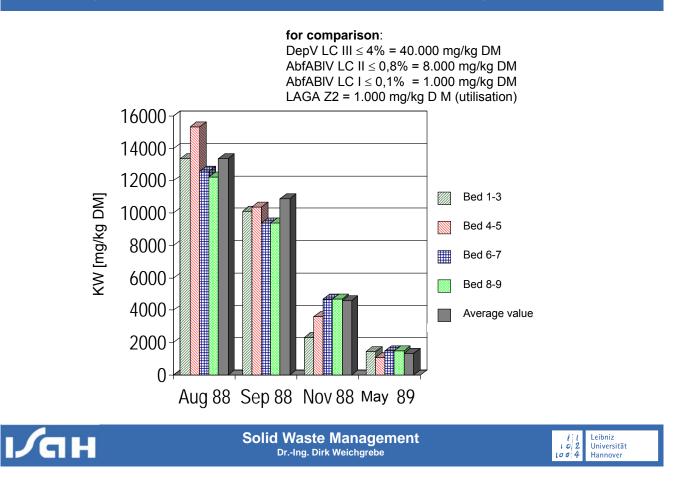
- prevention of toxicity, prevention of substrate inhibition
- surface structure, comminution of contaminated soils
- supply with nutrients and with aerobic processes with sufficient oxygen (air, O₂, H₂O₂, NO₃, O₃)
- safeguarding of the substance transfer (mixing, transport processes, solution agents, emulsifiers, gas permeability)
- if need be, inoculation with adapted micro-organisms

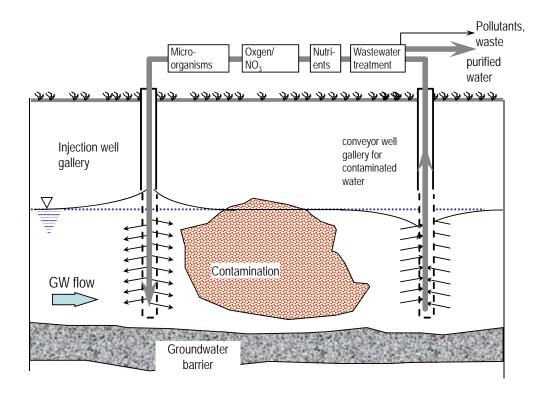
Substance Category	Generally well degradable	Generally hardly degradable
aliphatic hydrocarbons (HC), mineral HCs, and their derivates	+	
Mono-cyclical aromatic hdrocarbons (e.g. BTX aromates) and hetero- cyclical hdrocarbons (e.g. pyridine, quinolene)	+	
Poly-cyclical aromatic hdrocarbons (PAH)	+ a	+ ^b
Lightly volatile halogenated hydrocarbons, particularly chlorinated ones(LCHC)		
Poly-chlorinated biphenyles (PCB)		+ c
Poly-chlorinated dibenzodioxins and furans (PCDD and PCDF)		+ c
Pesticides and their derivates		+ c
Heavy metals		Not degradable

a up to 4-ring PAH b 5 and 6 ring PAH

c some low chlorinated congeners are principally degradable/dehalogenatable; degradation currently not detectable for highly chlorinated congeners




Solid Waste Management Dr.-Ing. Dirk Weichgrebe

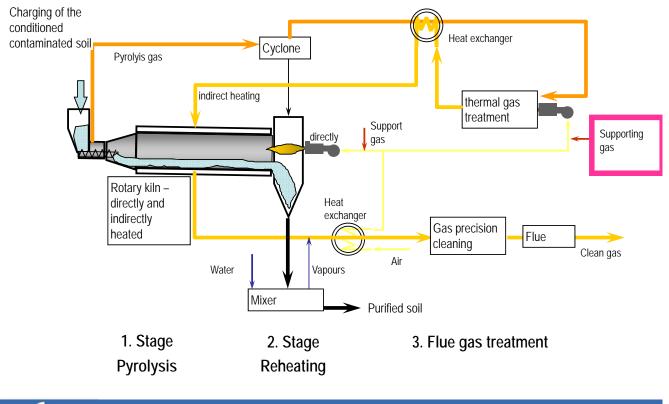

Biological On-Site and Off-Site Methods

- Land farming
 - Scarifying through ploughing, application of necessary nutrients, micro-organisms and water
- Rotting methods
 - (trapeze) heaps
 - tunnel methods
 - box/container methods

Biological In-Situ Groundwater Sanitation

Thermal Soil Treatment

 Thermal decontamination of polluted soils or – also possible, but as yet hardly practised – polluted waste from old deposits with degassing, gasification, or incineration methods.


Thermal soil sanitation is suitable for the following pollutant groups:

- volatile halogen-free organic compounds, e.g. hydrocarbons from mineral oil and coal refining (gasoline, kerosene, heating oil, diesel oil, BTX, PAH)
- halogenated organic compounds, CHC, chlorous pesticides, PCB, PCDD, PCDF (as impurity of many products and of waste)
- volatile elements and inorganic compounds, such as cyanide, Hg, Cd, Zn, Sb, As, F Cl, N, or P
- the suitability for certain pollutants depends mainly on the boiling point of these substances and the temperatures which can be reached in the treatment chamber

Solid Waste Management Dr.-Ing. Dirk Weichgrebe

Thermal Soil Treatment: Satem Ecotechniek or Ruhrkohle-Umwelttechnik

Solid Waste Management Dr.-Ing. Dirk Weichgrebe

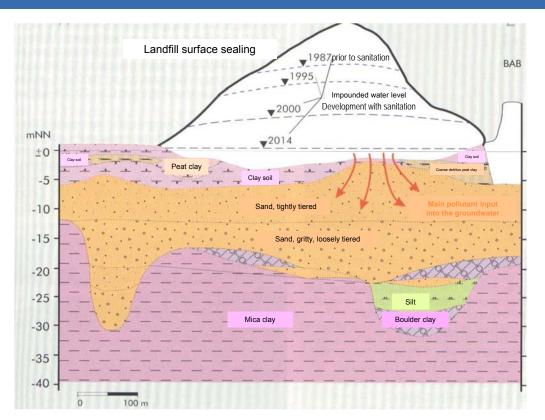
Leibniz

Universität

Hannover

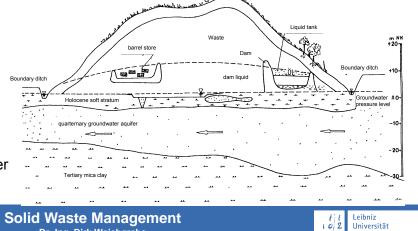
24

Thermal Soil Treatment


Hot gas filter of the pyrolysis plant of the BRZ company in Herne

Solid Waste Management Dr.-Ing. Dirk Weichgrebe

Sanitation Example Hamburg-Georgswerder – Impounded Water and Geology



Basic Situation Brownfields at Hamburg-Georgswerder

Parameter	Dimension	Dimension Pollutant concentration in the oleaginous phase of the le		
		Range	Average value	
Density	(g/L)	0,932 - 0,957	0,040	
TOCI	(%)	3,9 - 4,5	4,2	
Sum of the chlorcbenzenes	(mg/kg)	4.133 - 39.870	27.305	
Sum of the chlorophenoles	(mg/kg)	83 - 1.169	693	
PCB	(mg/kg)	14 - 222	130	
HV-CHC	(mg/kg)	20 - 63	36	
Aromatic solvents (BTEX)	(mg/kg)	6.060 - 24.423	11.987	
Sum of the PAHs	(mg/kg)	1.823 - 2.357	2.062	
2,3,7,8-TCDD	(µg/kg)	14,5 - 60	32	
Sum of PCDD/PCDF	(µg/kg)	22.225 - 54.878	42.531	

- 44 ha; operation from 1948-1979; 7-8 Mio. m³ Volume; also several 100.000 m³ special waste; 13-26 Mg dioxin!!!
- no technical sealing or drainage
- over 1 m m³ impounded water

Dr.-Ing. Dirk Weichgrebe

Hamburg-Georgswerder -

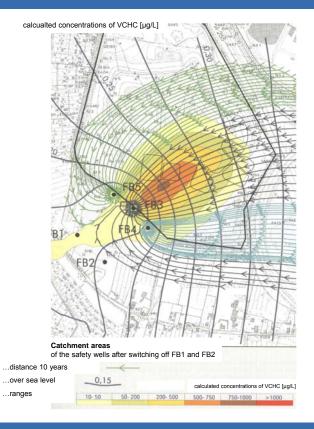
Tank for Liquid Special Waste

Barrel Store for Special Waste

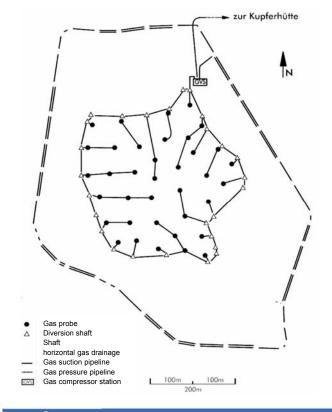
10 24

Hannover

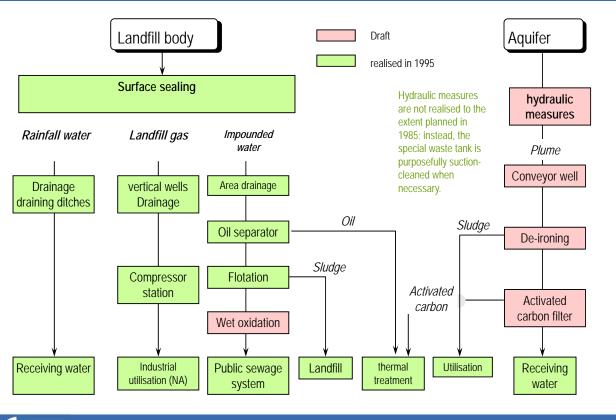
Hamburg-Georgswerder – Groundwater Sanitation Concept


1 st Strategy	1994
No sanitation	
	$\begin{array}{c} D_{0 = 0} f_{Rm} & Q = 0 \\ M = 280 & M = 350 \\ M = 350 & M = 350 \\ \end{array}$
5th Strategy Sanitation since 1994 (partial sanitation: pollution front)	1994 (B) (B) (B) (B) (B) (B) (B) (B)
	Dove Elbe Q = 8,5 M = 280 Dove Elbe Q = 5 M = 275 Dove Elbe Q = 5 M = 110
Calculated concentration ranges [µg/L]	10- 50 50- 200 200- 500 500- 750 750-1000 >1000
S1 S11 terms for the	n³/h] ass (VCHC) in aquifer [kg] e calculated well sites e sanitation wells

Solid Waste Management Dr.-Ing. Dirk Weichgrebe


Hamburg-Georgswerder – Groundwater Sanitation with 5 wells after switching off Wells 1 and 2

Hamburg-Georgswerder - Degassing


• The relatively low-pollutant gas can be transferred without preliminary treatment to the nearby North German Finery.

The area of the Bille settlement, where particularly because of the gas no further living was possible, shall in future be used as green space. According to a ruling of the Hamburg Senate, a public golf links will be built there [4]. A private investor is planning to start the construction of a 9-hole course by 1999. As part of the building activities, the entire area will be covered with a 60 cm thick layer of uncontaminated soil as protection against direct contact and drifts. The Environmental Agency supports these safety costs up to a total sum of about 2.12 m \in .

Solid Waste Management Dr.-Ing. Dirk Weichgrebe

Sanitation Concept Landfill Hamburg-Georgswerder 1995

Solid Waste Management Dr.-Ing. Dirk Weichgrebe

l eibniz

Universität

Hannover