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Exercise 1: Linear Programming 
The following (linear) optimization problem has to be solved graphically: 
Two power stations are located at a river with a constant discharge of 18 m³/s. The 
older one of the two power stations houses two identical turbines, with a maximum 
capacity of 4 m³/s each. Due to technical reasons the flow rate through both turbines 
has to be equal at all times. The new power station houses a single turbine with a 
higher capacity of 6 m³/s. The degree of efficiency is equal for all three turbines and 
independent of the flow rate. Discharge control of the river is realized by a newly built 
reservoir upstream of the power stations, which began operation together with the new 
power station. 
Not far from the power stations the river has a beautiful waterfall, which is a great tourist 
attraction for the region. Thus the responsible authority for approval set the condition 
when the first power station was built that at all times at least the same amount of water 
has to go down the waterfall as is diverted for power generation. Since the new 
reservoir allows a constant river discharge the condition has not been extended to the 
new power station, but it is still valid for the old one. 
Because of spatial restrictions the outlet of the new power station has to be combined 
with the outflow of one of the older turbines. The water from those two turbines flows 
through a channel with a maximum discharge capacity of 7.5 m³/s, before it joins the 
main river with the water from the waterfall and the third turbine again. 
What is the maximum flow rate through the three turbines in compliance with the 
constraints? 
 
 
 

 
 
 
 
Exercise 1 has to be solved arithmetically using the primal simplex algorithm. (The 

inactive constraint x2  6 is left out for faster calculation!) 
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1. Solution 
The solution of an optimization problem of LP is always found on the edge of the 
feasible solutions. To calculate the optimal solution it would be possible to calculate the 
value of the objective function at each corner of the solution plane. In order to reduce 
the calculation effort especially for complex problems the simplex algorithm is used. It 
moves from a starting point along the best path towards the optimal solution. 
The formulated problem can be solved with the primal simplex algorithm, for which the 
following assumptions are valid: 

1. objective function has to be maximized 

2. right hand side is not negative 

3. constraints , i.e. of the type a1  x1 +  + an  xn  const. 

In a first step all inequalities have to be transformed into equations by introduction of 
slack variables. 

x1  4    x1 + y1 = 4 

4  x1 + x2  18  4  x1 + x2 + y2 = 18 

x1 + x2  7,5   x1 + x2 + y3 = 7,5 

x1, x2, y1, y2, y3  0 
The objective function has to be transformed as well. As with the constraints, here as 
well no variable is allowed on the right hand side. 

 Z = 2  x1 + x2  -2  x1 - x2 + Z = 0 
The next step is to note the equations as matrix in a simplex tableau. 

Table 1: Tableau 1 (start tableau) 

BV x1 x2 y1 y2 y3 Z RS 

y1 1 0 1 0 0 0 4 

y2 4 1 0 1 0 0 18 

y3 1 1 0 0 1 0 7,5 

Z -2 -1 0 0 0 1 0 

 
To calculate the values of the five variables (Z is not considered) three equations are 
available. To solve the system of equations, two variables are set to 0. Those are called 
the non-basic variables. The remaining variables constitute the basis and thus are 
called basic variables. They are noted in column BV. In column RS the right side of 
each equation is noted. 
Tableau 1 can be read as follows. All non-basic variables = 0, i.e. x1 = 0 and x2 = 0. The 
values of y1 through y3 can thus directly be read from the table: y1 = 4, y2 = 18 und y3 = 
7.5. The value of the objective function is 0. 
Tableau 1 represents one feasible basic solution and therefore can be used as start 
tableau and the actual simplex algorithm can commence. 
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Step 1: Identification of the pivot column 
To reach the optimal solution with minimum effort, the variable which exerts the highest 
influence on the objective function (the one with the highest negative coefficient) has to 
be introduced into the basis. In the present case this is x1. Column x1 becomes the so-
called pivot column. 
Step 2: Calculation of the quotient qi 
To maximize the value of the objective function x1 has to be maximized. To achieve this, 
the variable which limits the objective function the most has to leave the basis. The 
variable is found by dividing the right hand side by the coefficient in front of x1 for each 
row. The smallest positive value of qi identifies the variable. 

 y1 = 4 - x1  0  x1  4 / 1 = 4 

 y2 = 18 - 4  x1  0  x1  18 / 4 = 4,5 

 y3 = 7,5 - x1  0  x1  7,5 / 1 = 7,5 
Step 3: Identification of pivot row and pivot element 
The calculation in step 2 results in y1 leaving the basis, and row y1 becomes the pivot 
row. The pivot element is the intersection of pivot row and pivot column. 
Step 4: Recalculation of the pivot row 
The pivot element has to become 1. Thus the pivot row is divided by the pivot element 
(just like a transformation in any other system of equations). 
Step 5: Recalculation of the remaining rows 
All other elements in the pivot column have to become 0. This is done by adding or 
subtracting multiples of the pivot row (again a common transformation in any system of 
equations). The result is a new tableau (table 2) and a new intermediate solution: x1 = 4, 
x2 = 0, y1 = 0, y2 = 2, y3 = 3,5 and Z = 8. 

Table 2: Tableau 2 

BV x1 x2 y1 y2 y3 Z RS 

x1 1 0 1 0 0 0 4 

y2 0 1 -4 1 0 0 2 

y3 0 1 -1 0 1 0 3,5 

Z 0 -1 2 0 0 1 8 

 
Step 6: Check if optimal solution is found 
As long as negative coefficients are found in row Z the optimal solution has not yet been 
reached. The simplex algorithm has to continue with iteration back to step 1. 
 
For the next tableau variable x2 has to be introduced into the basis and y2 has to leave 
it. After transformation the resulting tableau at the end of the second calculation cycle is 
shows in table 3. 

Table 3: Tableau 3 

BV x1 x2 y1 y2 y3 Z RS 
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x1 1 0 1 0 0 0 4 

x2 0 1 -4 1 0 0 2 

y3 0 0 3 -1 1 0 1,5 

Z 0 0 -2 1 0 1 10 

 
After the third calculation cycle the optimal solution is found. It can be read from tableau 
4. 

Table 4: Tableau 4 (optimal tableau) 

BV x1 x2 y1 y2 y3 Z RS 

x1 1 0 0 1/3 -1/3 0 3,5 

x2 0 1 0 -1/3 4/3 0 4 

y1 0 0 1 -1/3 1/3 0 0,5 

Z 0 0 0 1/3 2/3 1 11 

 
The solution is x1 = 3.5, x2 = 4, y1 = 0.5, y2 = 0, y3 = 0 und Z = 11. The pathway to the 
optimal solution is shown in figure 3. 
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Figure 1: Pathway of the simplex algorithm towards the optimal solution 
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Exercise 2:  Dynamic Programming 

The release xk from a reservoir (Fig. 1) has to be optimized using Dynamic 
Programming in order to maximize the profit from power generation. 
The inflow QZk is shown in Tab. 1 and the profit from power generation rk (xk) is shown 
in Tab. 2. All values for the release xk, the storage volume sk, and the inflow QZk are 
given in 107 m³. The profit from power generation rk (xk) is given in monetary units (MU). 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: schematic sketch of the system 

 

Table 1: inflow QZ 

quarter 1 2 3 4 

inflow 2 4 6 4 

 

Table 2: profit from power generation r 

release x 
quarter 

1 2 3 4 

0 0.0 0.0 0.0 0.0 

2 1.9 2.2 1.7 1.6 

4 3.9 4.1 3.6 3.4 

6 4.8 5.9 5.0 4.5 

 
During reservoir operation the following constraints have to be met: 

- maximum release:  0  xk  6 

- storage capacity:  0  sk  8 

- initial storage volume:  s0 = s4 = 6 

QZk 

sk 

rk 

xk 
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Solution: 

1. Mathematical formulation of the problem: 

 

 

 

 

 
 
 
 
 
 

2. Break down the problem into individual steps: 

 
 
 
 
 

 

- Formulation of the state transformation function: 

 
 

3. Backward-moving calculation: 

Recursive calculation of the objective function for each step: 

        *
1 1k k k k kR s r x R s  

This equation represents the basic principle of Dynamic Programming. The solution of 
each step only depends on the past optimum (R*) and on the particular decision. The 
objective function has to be optimized. The solution can be found with the help of tables: 

Table 3: backward-moving calculation step 1, k=4, QZ4=4 
initial 

storage  
sk-1 

total 
volume  
sk-1+QZk 

possible 
releases 

xk 

profit from
release 

rk(xk) 

final 
storage   

sk 

partial 
cumul. 

profit R*k 

cumul. profit 
rk(xk)+ R*k 

max. 
profit   
R*k-1 

opt. 
release 

x*k 

s3 s3+QZ4 x4 r4(x4) s4 R*4 r*4(x4) R*3 x*4(s3)

0         

2         

4         

6         

8         

QZ1 QZ2 QZ3 QZ4 

x1 x2 x3 x4 

quarter 1 
step 4 

quarter 4 
step 1 

quarter 3 
step 2 

quarter 2 
step 3 s0 s1

Z

s2 s3 s4 
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Table 4: backward-moving calculation step 2, k=3, QZ3=6 

initial 
storage  

sk-1 

total 
volume  
sk-1+QZk 

possible 
releases 

xk 

profit from
release 

rk(xk) 

final 
storage   

sk 

partial 
cumul. 

profit R*k 

cumul. profit
rk(xk)+ R*k 

max. 
profit   
R*k-1 

opt. 
release 

x*k 

s2 s2+QZ3 x3 r3(x3) s3 R*3 r3(x3) + R*3 R*2 x*3(s2)

0  0 
2 
4 
6 

      

2  0 
2 
4 
6 

      

4  2 
4 
6 

      

6  4 
6 

      

8  6       

 

Table 5: backward-moving calculation step 3, k=2, QZ2=4 
initial 

storage  
sk-1 

total 
volume  
sk-1+QZk 

possible 
releases 

xk 

profit from
release 

rk(xk) 

final 
storage   

sk 

partial 
cumul. 

profit R*k 

cumul. profit
rk(xk)+ R*k 

max. 
profit   
R*k-1 

opt. 
release 

x*k 

s1 s1+QZ2 x2 r2(x2) s2 R*2 r2(x2) + R*1 R*1 x*2(s1)

0 4 0 
2 
4 

0,0 
2,2 
4,1 

4 
2 
0 

7,0 
5,2 
3,6 

7,0 
7,4 
7,7 

 
 

7,7 

 
 
4 

2 6 0 
2 
4 
6 

0,0 
2,2 
4,1 
5,9 

6 
4 
2 
0 

8,4 
7,0 
5,2 
3,6 

8,4 
9,2 
9,3 
9,5 

 
 
 

9,5 

 
 
 
6 

4 8 0 
2 
4 
6 

      

6 10 2 
4 
6 

2,2 
4,1 
5,9 

8 
6 
4 

9,5 
8,4 
7,0 

11,7 
12,5 
12,9 

 
 

12,9 

 
 
6 

8 12 4 
6 

4,1 
5,9 

8 
6 

9,5 
8,4 

13,6 
14,3 

 
14,3 

 
6 
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Table 6: backward-moving calculation step 4, k=1, QZ4=2 

initial 
storage  

sk-1 

total 
volume  
sk-1+QZk 

possible 
releases 

xk 

profit from
release 

rk(xk) 

final 
storage   

sk 

partial 
cumul. 

profit R*k 

cumul. profit 
rk(xk)+ R*k 

max. 
profit   
R*k-1 

opt. 
release 

x*k 

s0 s0+QZ1 x1 r1(x1) s1 R*1 r1(x1) + R*1 R*0 x*1(s0)

6 8 0 
2 
4 
6 

0,0 
1,9 
3,9 
4,8 

8 
6 
4 
2 

14,3 
12,9 
11,1 
9,5 

14,3 
14,8 
15,0 
14,3 

 
 

15,0 

 
 
4 

 

4. Forward-moving procedure 

Starting from the calculated optimum of the first quarter’s objective function value (last 
step in the backward-moving calculation) the path of best decisions can be determined 
along the optima of the following quarters (in the backward-moving calculation the 
previous steps). 

Table 7: Optimal operation of the reservoir 

 solution 1 solution 2 

quarter step si xi si+1 si xi si+1 

1 4       

2 3       

3 2       

4 1       

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Optimal releases from the forward-moving procedure 
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