

Exercise No. 1 Water supply

Water requirements planning Dimensioning of wells

Dipl.-Ing. Nina Manig, Sanitary Engineering, SS 12

Institute for Sanitary Engineering and Waste Management

(ISAH - Institut für Siedlungswasserwirtschaft und Abfalltechnik, Hannover)

Address:	Main building, Leibniz Universität of Hanover, Welfengarten 1
Telephone:	0511-762-2507
Website:	www.isah.uni-hannover.de
E-Mail:	lehrstuhl@isah.uni-hannover.de

Lehrstuhl

Address:Main building, Leibniz Universität Hanover
Welfengarten 1,
Room e237
Telefon: 0511-762-2507
E-Mail: lehrstuhl@isah.uni-hannover.de

Research assistants:

Dipl.-Ing. Nina Manig

Consultation hour:

Wednesday 13:00 to 15:00 pm Friday 09:30 to 10:30 am and according to prior agreement!

Hand-out download:

www.uni-hannover.de
Studium
eLearning

► Stud.IP

Password: sludge

Water supply

Exercise: Today

Exercise: At a later date

Example 1: Water requirements planning I

Given:

Total number of inhabitants: 50,000 inhabitants Average water consumption per day: 130 L/(P · d) Water losses and self-consumption of the water works (filter washing + pipe cleaning): 7 % Precipitation: P = 650 mm/a (average) Evaporation: E = 400 mm/a (average) Surface (overland) runoff: $Q_0 = 100$ mm/a (average)

Calculate:

a)	Average annual water demand Q _a	[m³/a]
b)	Maximum daily water demand Q _{d,max}	[m³/d]
c)	Hourly water demand Q _h	[m³/h]
d)	Needed area for recharge of groundwater	[ha]

Design values for water requirements planning

Dipl.-Ing. Nina Manig, Sanitary Engineering, SS 12

Design values for water requirements planning

Design values for water requirements planning

Example 2: Water requirement planning II

Given:

ISAH-Town:

Household	Old single- and double-family houses 5,500 inhabitants	
	New single-familiy terrace houses, multi-storey houses	10,000 inhabitants
	Buildings with comfort apartments	2,500 inhabitants
	Modern mansions in best residental area	100 inhabitants
Small trade	1 Bakery	10 employees
	1 Butcher	15 employees
Agriculture	Cattle	50

Calculate:

Calculate the average and maximum daily water demand of ISAH-Town using the individual requirement calculation.

Neglect any water losses and self-consumption of the water works (filter washing + pipe cleaning)

Average per consumption-unit

	Consumers	Unit	Liter
1.	Household, incl. small trade		
1.1	Household		
	1. Old single- and double-family houses	I/(P ⋅ d)	70
	2. Simple multi-family houses, year of constr. before 1940	I/(P · d)	90
	3. Multi. storey houses with social apartments	I/(P · d)	120
	4. New single-family terrace houses, multi-storey houses	I/(P · d)	150
	5. Buildings with comfort apartments	I/(P · d)	180
	6. Single- and double-family houses in good residential area	I/(P · d)	200
	7. Modern mansions in best residential area	l/(P · d)	275
1.2	Small trade		
	1. Baker, 1 Employee / 200 inhabitants	l/(Employee · d)	150
	2. Confectioner, 1 Employee/ 1000 inhabitants	l/(Employee · d)	200
	3. Butcher, 1 Employee / 300 inhabitants	l/(Employee · d)	250
	4. Coiffeur, 1 Employee / 300 – 600 inhabitants	l/(Employee · d)	200
	5. Car-wash	l/car	80
	6. Commercial enterprises	l/(Employee · d)	250
	7. Restaurants	l/((Guest+Employee) · d)	50
1.3	Agriculture		
	1. Cattle	l/(Cattle · d)	50
	2. Cattle without litter	I/(Cattle · d)	60
	3. Cattle with litter	I/(Cattle · d)	75
	4. Small domestic animals (=1/5 cattle)	l/animal	1.5
	5. Milk collection station, per liter milk	l/(m² ⋅ d)	1.0
	6. Intensive agricultural irrigation)	I/(m² ⋅ d)	

[Mutschmann/Stimmellmayr, 1995]

Example 3: Dimensioning of wells

Given:

Hydrostatic level over groundwater bottom or thickness of water bearing layer: H = 20 m

Lowered groundwater level in the well: h = 16 m

Hydraulic conductivity (coefficient of permeability) (fine sand): $k_f = 2 \cdot 10^{-4}$ m/s

- b) Yield of the well (groundwater inflow) Q_{GW} [l/s; m³/d; m³/s]
- c) Capacity of the well (tangible water inflow) Q_t [l/s; m³/d]
- d) Number of needed wells n_{well} [-]
- e) Name the groundwater protection areas and their requirements

Cross section: Vertical filter well

Calculation formula: Dimensioning of a well

Draw-down range R according to SICHARDT:

$$R \cong 3000 \cdot s \cdot \sqrt{k_f}$$

with:

k_f: Hydraulic conductivity (coefficient of permeability) [m/s]

s: Draw-down [m]

R: Draw-down range R according to SICHARDT [m]

Calculation formula: Dimensioning of a well

Considering the continuity equation and the filter law of Darcy, the following equation results:

$$Q_{GW} = \left(H^2 - h^2\right) \frac{\pi \cdot k_f}{\ln(R/r)}$$

with:

k_f Hydraulic conductivity (coefficient of permeability) [m/s]

Q_{GW} Yield of the well (groundwater inflow) [m³/s]

- H Hydrostatic level over groundwater bottom or thickness of water bearing layer [m]
- h Lowered groundwater level in the well [m]
- R Draw-down range R according to Sichardt [m]
- r Radium of the well [m]

Calculation formula: Dimensioning of a well

l l Leibniz l 0 2 Universität l 0 4 Hannover

Capacity of a vertical filter well (tangible water inflow):

$$Q_t = \frac{2}{15} \cdot \pi \cdot r \cdot h \cdot \sqrt{k_f}$$

with:

- k_f Hydraulic conductivity (coefficient of permeability) [m/s]
- Q_t Capacity of a vertical filter well (tangible water inflow) [m³/s]
- h Lowered groundwater level in the well [m]
- r Radium of the well [m]

Maximum well capacity

Plot of the groundwater inflow QGW (theoretical well inflow) and the tangible water inflow Q_t as a function of the draw-down s.

The point of intersection gives the maximum well capacity according to the maximum draw-down (in order to meet the requirements: Q_t ≥ Q_{GW})

