

Lecture 7

Water-Transportation and -pumping

Prof. Dr.-Ing. K.-H. Rosenwinkel, Sanitary Engineering, SS 12

Depending on the operating conditions (*Betriebsverhältnisse*) pumps should meet the following requirements:

- wear-resistant and corrosion-proof materials
- high operation safety
- automatic start-up (selbsttätige Inbetriebnahme)
- good adaptability (Anpassungsfähigkeit) to changing operating conditions
- low-vibrations and quiet run

Construction of centrifugal pump with one channel propeller

Advantages and disadvantages of centrifugal pumps

Advantages:

- little space required
- inexpensive
- low maintenance
- almost vibration-free run

Disadvantages:

- no self-priming capability
- no water stop effect (Sperrwirkung) when pump stops
- risk of obstruction with small impeller profiles (Laufradquerschnitten)

Characteristic curve of a centrifugal pump with constant speed per minute (rpm)

Prof. Dr.-Ing. K.-H. Rosenwinkel, Sanitary Engineering, SS 12

Leibniz Universität Hannover

Characteristic pump curves

Engine power

The required engine power can be estimated with the following formula:

$$P = \frac{\rho \cdot g \cdot Q_P \cdot h_D}{1000 \cdot \eta_P \cdot \eta_M \cdot \eta_K} \quad [kW]$$

with:

ρ	= density of hauling fluid	[kg/m³]
g	= gravity	[m/s²]
h _D	= manometric head	[m]
Q _P	= pumping capacity	[m³/s]
η_{P}	= pump efficiency	
η_{M}	= engine efficiency	
η _κ	= coupling and gear efficiency	

Pump efficiencies η as a product of single efficiencies

Pump construction type	η
Centrifugal pump with:	
Torque flow propellers	till 0,5
Single vane propellers	till 0,8
Three passage propellers	till 0,85
Spiral non-clogging propellers	till 0,8
Screw conveyors	till 0,8
Pneumatic pump stations	till 0,4

Water phase diagram

Cavitation

Typical pump characteristic curve, cavitation area

Pressure head H Instable operation area. stable operation area Piping characteristic curve $H_A(Q)$ H₀ B₂ H, H₁ Operating area B₁-B₂ B₁ H_{dyn}. Pump characteristic curve (H(Q)-characteristic curve) danger of cavitation H_{stat.} NPSH erf. > NPSH worth. Q_2 Q_1 Pumping capacity Q

NPSH-value of a pumping system during free-intake operations

Prof. Dr.-Ing. K.-H. Rosenwinkel, Sanitary Engineering, SS 12

NPSH-value of a pumping system during suction operation

Suction operation

