1

Geodesy

- Earth sciences discipline dealing with technological and practical issues relevant to the measurement and representation of the earth, as well as objects on it – and also their inter-relations.
- Shape, area, length, direction (azimuth), positioning, dynamics,... in large extent (global) as well as zonal (local)
- Gravitational, geomorphomism, geodynamics, precise field measurements, geoinformation, ...

, ikg

 (basically) Does not deal with the earth's processes, material,...

Earth's Shape

- Ellipsoid (spheroid) a <u>mathematically</u> (and <u>geometrically</u>) defined regular <u>surface</u> that have specific dimensions. A perfectly regular surface (can be described numerically by a continuous function).
- Geoid a theoretical equal-potential <u>physical surface</u> that coincides if the oceans would conform over the Earth free to adjust to the combined effect of the Earth's mass attractions, i.e., gravitation and rotation (centrifuge). An irregular surface.
- Separations between the two are referred to as undulations (also irregular).

Refe	ere	nce	System	- glo	bal			
	•	– Re	Id Geodetic System 1984 = WGS84 Reference system for GPS coordinate measurements Blobally best fitting reference ellipsoid					
	DHDN Potsdam Datum (local)							
	\mathbf{N}				а		b	f
		1 7	Bessel- soid 1841	6,377	7,397.155 m	6,	356,078.965 m	1 : 299.152
			-Ellipsoid VGS 84	6,378	3,137.000 m	6,	356,752.315 m	1 : 298.257
	Geodetic datum + Referece ellipsoid (global)							
								32

Two basic approaches exist:	
Homogenous – a unique and unified mathematical transformation o data through four principal geometric actions. Each pixel/entity is transformed with <u>the same</u> magnitude and behavior. Usually implemented for map referencing or transformation between two given systems (commonly used: Affine transformation):	f
 Translation Rotation Scaling 	
 Scaling {Skew (in case axes are not perpendicular)} 	
 Differential stretch (Rubber-Sheeting) – a non-unified transformation of the area – different zones are fixed and referenced independently Usually implemented for creating map-series (mosaic) or deformed data. 	

Affine Transformation							
	 Physical geometric and mathematical actions that 'translate' the pixel-frame position to the "real" geodetic reference-frame (map, datum) one: Translation – shifting between the pixel-origin and reference one: 2D – two values (x,y) 3D – three values (x,y,z) Rotation – rotating the pixel-frame to the "true north": 2D – one value (z-axis) 3D – three values (x-, y-, z-axis) Scaling – a unified (or differential) transformation in size: 2D – one or two values ({x,y},xy) 						
	> 3D – one, two, or three values (x,y,z,{xy,z},{x,yz},)						
	Skew – in case there is no perpendicularity of both references:						
	2D – one value (xy)						
	3D – three values (xy, xz,yz) A combination of any of the four						

ntei	rpolatic	n
	at spe Goal: – De in	ation: <u>nuous</u> phenomena can only be measured using samples ecific points, e.g. discrete data erive (predict, approximate) value for phenomena at every point space via statistical approximation based on a set of known lues (observations)
	– Me	nple: errain is continuous phenomenon easured at specific data points, e.g. samples (observations) erpolation to generate a continuous surface description
		48 (ik

65

- so: prediction position
- N: number of observations

