Urban Water Management

Within the module: Ecology and Water Resources Summer 2012

April 24 - May 16, 2012

Institut für Wasserwirtschaft, Hydrologie und Iandwirtschaftlichen Wasserbau Leibniz Universität Hannover Part 7

Prof. Dr.-Ing. Hans-Reinhard Verworn

Overview

Contents today:

- 1. Pressures and impacts: flowing waters
 - point sources → urban areas
 - diffuse sources → rural areas

Compounds and element fractions

	Conversion		
Compound	\rightarrow	←	Nitrogen fraction
NO ₃	0.226	4.43	NO ₃ - N
NO ₂	0.305	3.28	NO ₂ - N
NH ₄	0.778	1.29	NH ₄ - N

Atomic weights

nitrogen (N) 14,01
 oxygen (O) 16,00
 hydrogen (H) 1,00

Pressures and impacts: Flowing waters

Differentiate:

base flow - continuous - stationarydirect runoff - sporadic - instationary

also for pressures:

• continuing - e.g. input from groundwater, WTP discharge

• sporadic - e.g. erosion from fields, CSO

Kinds of appoach

Balances (typically for a year)

- yearly loads
- yearly runoff volumes
- mean concentrations
- distribution in time not accounted for

Single events

5

Kinds of approach

Single events (processes, sequences)

- e.g. oxygen balance (content dynamics)
 changes due to conversion and degradation processes
 - locally over time
 - along the flow path
- e.g. hydraulic pressures ("hydraulic stress")
 - interstitial
 - deposition, erosion
 - displacements
- e.g. conservative substances
 - heavy metals
 - PCBs

Important

Results / findings cannot be transferred, especially not from balances to single events

Example: runoff coefficient

Pressures and impacts: Flowing waters

Differentiate:

continuoussporadic urban areas

rural and other areas - continuous

- sporadic

Urban areas

- waste water treatment plant discharges
- stormwater and combined sewer overflow discharges

Rural areas

- drains, inflow from groundwater
- surface runoff

Pressure sources

Urban areas

 waste water treatment plant discharges parameters: BOD, COD, NH₄, PO₄,

effluent concentrations:

to be monitored regularly, typically 24h mixed sample; minimum standards

 acceptable water course immission: generally mean values, globally or individually set

loads: multiply concentrations with wastewater amount

■ wastewater amount: water use in I/(c·d) plus infiltration water

(

Pressure sources

Urban areas

Typical concentrations of inflow to and runoff from wastewater treatment plants

	BOD	COD	NH ₄ -N	Total N	Total P
	mg/l	mg/l	mg/l	mg/l	mg/l
raw sewage (inflow)	280	600	45	70	6
runoff (standards)	15	75	10	18	1
runoff (achieved)	10	40	13	7	0,2

Pressure sources

Urban areas

- stormwater discharges and combined sewer overflows in separate and combined sewer systems
 - stormwater pollution
 - from rain pollution and wash-off
 - variable over time for each rain event
 - mean yearly load:

```
600 kg/(ha·a) COD (ha = impervious area only) at 800 mm rain per year and \psi_m = 0,7:
```

→ 560 mm runoff

mean concentration: 600 [kg/ha] / 560 [l/m²] ≈ 107 mg/l

11

Pressure sources

Rural areas

- continuous:
 - groundwater (base flow)
 - drains
- sporadic:
 - rain induced direct runoff
 - quality affected by erosive compounds
- parameters: generally not (only) COD
- nutrient load from:
 - drains
 - agricultural discharges
 - groundwater

Pressure sources

Urban and rural areas

• yearly nutrient loads discharged into the surface water bodies (1995)

Di de d	Loads in [t/a] and (%)		
Discharge from	Phosphorus	Nitrogen	
Precipitation	1 (2)	20 (3)	
Agricultural discharges	7 (12)	20 (3)	
Drain water	1,5 (3)	45 (6)	
Erosion	18,5 (31)	45 (6)	
Groundwater	1 (2)	330 (42)	
Industrial sewage	6 (10)	60 (8)	
Stormwater treatment	6 (10)	20 (3)	
Domestic sewage	17 (30)	235 (30)	
Total	58	775	