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Climate Change

= Climate change: long-term global change caused by geological
processes and anthropogenic emissions.

= The estimation of the impact of climate change on water
resources is uncertain and depends on the region and the
evaluated scenarios.

= However: most experts agree that climate change will have a
significant impact on water availability.

= QOther aspects of global change are at least as important for
water management (population growth, socio-economic
development, political changes).
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IPCC Reports about Climate Change

= |PCC: Intergovernmental Panel on Climate Change

= Founded by WMO and UNEP

= Elaborates political relevant assessments of the scientific

literature about climate change
= Structure of the IPCC reports:

] s =1 B
CLIMATE CHANGE 2007
WA TR O CLIMA TH M AN

Working Group | Working Group Il Working Group llI The AR4
Report Report Synthesis Report
"The Physical Science "Impacts, Adaptation "Mitigation of

Basis"

and Vulnerability"

Climate Change"
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Change of Greenhouse Gas Emissions
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Atmospheric concentrations of carbon dioxide,
methane and nitrous oxide over the last 10,000 years (large
panels) and since 1750 (inset panels). Measurements are shown
from ice cores (symbols with different colours for different studies)
and atmospheric samples (red lines). The corresponding radiative
forcings are shown on the right hand axes of the larae panels.
{Figure 6.4 Fig. 1 (IPCC, 2007)
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Change of Radiation
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Directly Observed Changes
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Fig. 3: Observed changes of
global temperature, sea level
and snow cover on the
Northern hemisphere (IPCC,
2007)
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Paleoclimatic Analyses
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Fig. 5: Views of temperature change in the next century are informed by temperature changes in
the past. For illustrative and educational purposes, three sets of surface temperatures have been
assembled: 1000-year reconstructions of past temperature change based on proxies (tree rings, Chapman, 2010
corals, etc.), glacier lengths, and borehole temperatures; the instrumental record; and Intergovern- !
mental Panel on Climate Change (IPCC) projections for temperature change from 2000 to 2100.
Figure modified from National Research Council [2006] and IPCC [2007].
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Expected Changes — More Hydrological Extremes!

Table 1: . Recent trends, assessment of human influence on the trend and projections for extreme weather events for which there
is an observed late-20th century trend. (Tables 3.7, 3.8, 9.4; Sections 3.8, 5.5, 9.7, 11.2-11.9}

Likelihood that trend Likelihood of a Likelihood of future trends
Phenomenon® and occurred in late 20th human contribution based on projections for
direction of trend century (typically to observed trend® 21st century using I~
post 1960) SRES scenarios o
o
Warmer and fewer cold N
days and nights over Very likely< Likely? Virtually certain® 8
most land areas o
Warmer and more frequent
hot days and nights over Very likely® Likely (nights)d Virtually certain?
most land areas
Warm spells/heat waves.
Frequency increases over Likely More likely than not! Very likely
most land areas
Heavy precipitation events.
Frequency (or proportion of . = ;
total rainfall from heavy falls) Likely More likely than not! Very likely
increases over most areas
Area affected by Likely in many ) .
droughts increases regions since 1970s More likely than not Likely
Intense tropical cyclone Likely in some ) ,
activity increases regions since 1970 More likely than not! Likely
Increased incidence of
extreme high sea level Likely More likely than not'h Likely'
(excludes tsunamis)®
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IPCC Emission scenarios

(IPCC, 2007)
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Regional Climate Projections

= Physical based climate modelling
— Requires downscaling of global climate modelling results

— Requires computation of impact models, e.g. hydrological models
driven by the climate projection data

— Uncertainty caused by a lack of knowledge about relevant processes,
insufficient observation data, chaotic behaviour of the climate system.
= Statistical trend analyses

— Analysis of trends within historical records, extrapolation of these
trends into the future

— Direct analysis of the desired variable (e.g. runoff) possible

— Uncertainty caused by a lack of data (short time series), the inability of
statistical methods to regard for changing processes, the chaotic
behaviour of the climate system.
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Regional Climate Projections

= Hydrological analyses need surface variables like precipitation
and temperature in high spatial resolution.

= Global climate models: coarse resolution (100 to 200 km grid).

= Dynamical downscaling: nested
deterministic (physically based)
modeling: global model drives

global climate

model ECHO

regional model with 5 to 20 km grid. global 1000 years
= Statistical downscaling: Projection ao _ .
. . £ regional climate

of observed time series (from T

. . . O model REMO
climate stations) into the future ; <
using statistical methods regional _§ <M><M>
(relatlon.shlp between glob.al and K ——
local variables) or stocha.stlc mo.dels o observation
dependent on global variables like .
large scale weather patterns. observations \/

Fig. 7:
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Regional Climate Projections

= Typical model scenarios:
— Reanalysis run (driven by observation);
— Control run (20t century climate simulation);
— Climate projection run (implementation of IPCC emission scenarios);
— Control and projection: ensembles with different initial conditions!

= Examples (Central Europe):
— Dynamic: REMO, CLM
— Statistical: WETTREG, STAR

= Advantages and disadvantages of the downscaling methods:

statistical downscaling dynamic downscaling

+ | regional precipitation conservation of mass and energy,
characteristics unobserved areas

- | observations required, high computational demand
extrapolation uncertain

WATENV :: Integrated Water Resources Management :: Climate Change 15

Modeling of Feedbacks

= Feedbacks between components of the climate system:
atmosphere, hydrosphere, cryosphere, lithosphere, biosphere.

= With a separate simulation (loose coupling) of the sub-systems
one cannot simulate feedbacks.

= Researchers are developing dynamically coupled models, but it
is open if we will get a “world model” in the near future.
= Examples for feedbacks:

— temperature 7%, evaporation ", more water vapour, counter-radiation
N, temperature 1 [positive feedback]

— temperature 7%, evaporation I, more clouds, global radiation {,,
temperature |, [negative feedback]

— temperature 1, ice and snow melts, albedo {,, temperature 1,
[positive feedback]
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Uncertainty

Table 2: Selected sources of uncertainty in the computation of climate projections

(changed from Krahe, 2009)

No Source

Cause

Solution

1 Internal climate Deterministic-chaotic Several realizations of
variability behaviour of the climate GCM, RCM
system, initial conditions
2 Emission scenario Uncertainty about future Several alternative
(SRES) greenhouse gas emissions scenarios
3 Global climate model Different model approaches, Ensemble of several
(GCM) sub-scale processes, GCM
incomplete knowledge
4 Regional climate model Like 3 Combination of several
(RCM)/Statistical methods
downscaling
5 Impact models Like 3 Combination of several
(hydrology, hydraulics models
etc.)
WATENV :: Integrated Water Resources Management :: Climate Change 17

Uncertainty of Trends (1)
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Fig 8: Uncertainty of trend estimation (sub period a)
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Uncertainty of Trends (2)
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Fig 9: Uncertainty of trend estimation (sub period a)
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Uncertainty of Trends (3)
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Fig 10: Uncertainty of trend estimation (complete time series)
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2 Impact of Global Change on Water
Resources

.........

Grimma (Mulde), 2002-08-13. Source: dpa Small river in the middle mountains 2003
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IHP 7th Phase ,,Water Dependencies” — Activities

= The development of monitoring networks and databases for
change analysis

= Methods for change detection, attribution and prediction

= Prediction of changes in and vulnerability of groundwater,
floods, low flows and droughts

= Prediction of groundwater quality degradation and restoration

= Assessment of snow, ice and glacier mass balances

= Assessment of the impact on sediment transport

* |ntegrated water management for adaptation to global change
risk

= Policy-related interventions for adaptation

UNESCO IHP, 2011
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Data Analysis: Change in runoff already observed?
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Observed Trends for Central Europe

= More extreme events e.g. heavy rainfall observed -> expected?
— More local flash floods -> decentralized flood protection more

efficient?

Statements about

future extreme events
are very uncertain!
(Bronstert et al. 2007)

Fig. 12: Observation:
heavy rainfall events
of 24 h duration in the
winter season for the
period 1931-2000.

(Hennegriff et al. 2006)
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Hydrological Scenarios

} Coupled ™
Ocean-Atmosphere

Models
o,

Water Resources
Applications
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Fig. 13: Sorooshian, HEPEX, 2004
Hydrological Ensemble Prediction Experiment (provided by I. Cluckie)
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Impact Model Chains / Cascades
Emission scenario: SRES A1B
U g
Global Climate Model (GCM) ~150 km
20
Regional Climate Model (RCM) ~10-20 km
Statistical Dynamical
I 20
Bias to Reference data
2 Sg
Bias correction (BfG) ~5 km
v <
Water balance model ~1km
Fig. 14: Provided by Willems, changed
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Problem of Climate Projections: Bias
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Fig. 15: Mean annual precipitation by control runs of two climate models 1961-2000 (interpolated)
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Bias of climate projections

Niederschlag Abfluss
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Bias of climate projections
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Fig. 17: Hannover (Klimadaten), TU Braunschweig (Wasserhaushalt)
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Possible Solutions

= Bias-correction of climate data

— Simple approach: sub-basin correction factor, better:
quantiles/seasons/regions

= Improvement of deterministic climate models
— Pilot study Harz: non-hydrostatic REMO with 1km grid
— Orography, snow accumulation/melt, convection
= Re-calibration of hydrological models
— Flood simulations with 1h resolution — high rainfall intensities
surprisingly good represented by REMO control period
|

High resolution stochastic models

— Sample size of climate projection too small for (rare) extreme events
(,,only“ 50 yrs past and 100 yrs future)
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Uncertain Future: Winter
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30-jahriges gleitendes Mittel, relativ zum Mittelwert 1971-2000

20 — GLO_frt
— GLO_ipc
— GLO_mm5
GLO_rem
15 —— REM_uba
— REM_ubv
— REM_uba_b
10 —— REM_bfg b
— REM_ens_b
—— CLM_eh_b
—— CLM_hd_b
5 —— CLM_eh2 b
< WET09_eh
i — WET09_hd
—— WET09 _cn
0 —— WET10_eh
-5
-10
-15 T T T T T T T T T T T T
1960 1970 1980 1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090
Jahr
HyStat HQ/NQ 3.0. IAWG 2011
Fig. 17: Provided by Willems, changed
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Fig. 18: Provided by Willems, changed
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Expected Runoff Trends for Central Europe

= Seasonal shift in precipitation
— Summer precipitation similar or slightly decreasing, about 10 % change;
— Winter precipitation significantly increasing, up to more than 40 %.

160
'/\‘ —p |st-Zustand
140 / \ —8— Zukunftsszenario
120 = = = Halbjahresmittel Ist-Zustand
= = = Halbjahresmittel Zukunfisszenario|

100 1

Abfluss MoMHQ [m¥s]
3

Mean monthly maximum discharge

60
- l LR B N . N e B B B B B B e 3
40 R hoa ~ S RLRERER
1
2 Winter ¢+r Sommer
0 ; . ; : ; i . ; .

Nov Dez Jan Feb Mrz Apr Mai Jun Jul Aug Sep Okt
Fig. 19: Example Kinzig river (Schwarzwald, Germany), from Hennegriff & Reich (2007)
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3 Adaptation of Water Resources
Management (Examples)
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Adaptation ex.: Climate Factors for Design Floods (1)

= Correction of design floods by application of a “climate factor”.

= Procedure (KLIWA project, application in Baden-
Wiirttemberg/Germany):
— Regional climate projections as drivers for:
— Water balance models which:
— Simulate scenarios of future runoff;
— Extreme value statistics;
— Comparison of status quo with projections of the future;
— Definition of climate factors for recurrence intervals T, of runoff.

= Discussion:

— Practical approach, which can be implemented at local scale (flood
protection planning).

— Still high uncertainty, which is not reflected (better: ensembles,
probabilistic appraoches, complete risk analysis).
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Adaptation ex.: Climate Factors for Design Floods (2)

= HQq =7 * HQy,
= HQq, « : runoff (with climate change correction)
— f; i climate factor
— HQq,: runoff (status quo) from modelling or regionalization

Table 3:
Tl Klimaanderungsfaktoren f;y
1 2 3 4 5
2 1:25 1,50 1,75 1,50 1,75 -
5 1,24 1,45 1,65 1,45 1,67 : Jd Ww
10 1,23 1,40 1,55 1,43 1,60 f LT :
20 1,21 1,33 1,42 1,40 1,50
50 1,18 1,23 1,25 1,31 1,35 i I
100 1,15 1,15 1,15 1,25 1,25 ' | | B
200 1,12 1,08 1,07 1,18 1,15 - - | T
500 1,06 1,08 1,00 1,08 1,05 . L
10007 1,00 1,00 1,00 1,00 1,00
) For return periods above T>1000 a the factor is 1,00 Fig. 21: Hennegriff et al. 2006
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Tackling Uncertainty

= Ensemble simulations
— Bandwidth of uncertainty by combination of different global and/or
regional models, different emission scenarios etc.
= Adequate interpretation of model results

— Climate projections do not allow a forecast for a single point at the time
axis, they are designed to reproduce trends of long-term mean values.

— Systematic errors of the model chain can be corrected if recognized
(bias correction or other model output statistics).
= Adaptive planning processes
— dynamic improvement of climate models and correction methods

— continuous extension of observation time series
-> learning process

— iterations: re-compute model chain when new data or better sub-
models are available
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Thank you for your attention!

Global Change
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