16. Processing and Utilisation I

- Recovered Paper, Recycling Glass, Scrap Plastic -

Solid Waste Management Dr.-Ing. Dirk Weichgrebe

What is Paper? - Development

- "Paper" (from Greek/Latin: "Papyrus" (pith of the papyrus plant) is nowadays defined as:
 - "Planar material made of fibres, predominantly of plant origin, which after exposing, suspension, and dewatering connect through chemical bonding via partial valency. This bonding reversible through addition of water."
 - invented 105 AC in China, first produced from tree bark, rags, and fishing nets.
 - 1366 first mention of paper production in German (Nuremberg)
 - in the Middle Ages and up to the middle of the 19th Century, paper was also produced from rags, since 1825 also of mechanical pulp and cellulose.
 - towards the end of the 18th Century, invention of mechanical sheet formation in France; at the beginning of the 19th Century, mainly in England, development of the paper machine.
- "Recovered paper "
 - 1366 privilege of the council of the city of Venice granted to the (recovered) paper factory in Treviso to use the waste paper from Venice.

l eibniz

Universität

Hannover

Paper Production in ancient times

Chinese Papermaker

Der Papprer.

Ich brauch Hadern zu meiner Mål Dran treibt mirs Rad defi waffers viel/ Daß mir die zichnitn Hadern nelt/ Das zeug wirt in waffer einquelt/ Drauß mach ich Pogn auff de filk bring/ Durch preß das waffer darauß zwing. Denn henet ichs auff/laß dructen wern/ Schneweiß vnd glatt / jo hat mans gern.

l eibniz

Universität

Hannover

102

Abb. 12. Der Papyrer (aus dem Ständebuch von Amann)

Solid Waste Management Dr.-Ing. Dirk Weichgrebe

Cellulose

- Cellulose = part of wood remaining after chemical separation of the lignin (ca. 50% of the wood) as
 - Sulphate pulp, (-SO₄²⁻) not produced in Germany, only imported; alkaline sulphate pulping with aqueous solution of soda lye, sodium sulphide and sometimes also soda being boiled for 4-6 hours at 170° to 190° C; sulphate pulp is difficult is bleach, thus so far only limited dispensing with chlorine bleaching possible; high tensile strength
 - Sulphite pulp, (-SO₃²⁻) predominantly domestic production; acidic sulphite pulping with aqueous solution of magnesium or calcium sulphite; after evaporation of the base liquor, here also thermal utilisation and recovery of chemicals; cellulose of low tensile strength, but more easily bleachable (even without chlorine, with oxygen, H₂O₂ or O₃)
 - Organosolv or ASM methods; combination of acidic or alkaline disintegration with solvent processes (methanol);
 - semi-chemical pulp (cellulose with residual ratios of lignin)

(sulphides = salts of hydrosulphurous; sulphate = salts of sulphuric acid)

Production of Cellulose with the Magnesium-Bisulphite-Method according to GÖTTSCHING, 1990

Further Paper Raw Materials / Products

- Ground wood pulp for wood-containing paper (yellowing in the light), for instance for newspapers;
 - mechanical,
 - thermo-mechanical, and
 - chemo-thermo-mechanical production
- Recovered paper (RP) quantitatively the most important fibrous substance
- Auxiliary materials and filler: glue, white goods (lime, kaoline, etc.)
- Rags, for instance for banknote paper

 As for the products, one differentiates between (abbreviated as PCC): Paper grammage according to DIN 6730 < 225 g/m² Cardboard grammage according to DIN 6730 > 600 g/m² Carton grammage according to DIN 6730 > 150 - 600 g/m²

Production of Mechanical Wood Pulp

Solid Waste Management Dr.-Ing. Dirk Weichgrebe

Paper Production

Papier Machines

Ган

Paper, carton and cardboard for packaging 9,356 kt

Hygenic paper (machinery production) 1,405 kt Paper and carton for technical and specia utilisation 1,502 kt

Wastewater Treatment in Papermillsd

Recovered Paper Sources and Qualities

- Recovered paper (RP) is produced at various **points of origin**, for instance:
 - <u>paper converting</u>: large amounts per point of origin, sorted, unsoiled, higher qualities
 - <u>unpacking business</u>: medium to larger amounts, only packaging papers
 - <u>households, administration, smaller shops</u>: low amount per source, mixed lowest qualities
- **RP Types** (European List of Varieties (CEPI / B.I.R.))
 - Lower
 - Medium
 - Higher
 - Kraft paper
 - Special types
- Extraneous material (undesirable types of paper and material that is not paper)

 \leq 3 or on average \leq 2,5 weight %; at \geq 10 weight % water \rightarrow extractions

Typical Residues of Paper Production

Statistics of the German Paper Industry Association confirm the expected trend in regard to recovered paper

Potentiale und Herausforderungen bei der Erschließung des Wirtschaftsgutes Papier

Statistisches Bundesamt

Germany

Index of the wholesale prices for recovered paper

						2005 =	100						
Reporting					I	Reporting	month						Annual
year	Jan	Feb	Mrz	Apr	Mai	Jun	Jul	Aug	Sep	Okt	Nov	Dez	average
				Mixed r	ecovered	l paper (E	3 1202)	, weight '	100%				
					Inter	linking fa	ctor 1.705	53					
1999							64,1	87,2	83,2	75,7	78,6	76,2	
2000	79,3	103,4	145,0	219,0	237,8	242,4	240,8	208,8	172,8	153,0	141,9	102,8	170,6
2001	66,2	61,7	63,3	64,8	64,3	60,9	61,7	64,1	67,5	69,6	70,8	70,4	65,4
2002	70,1	68,9	70,1	91,2	132,2	239,6	237,2	190,3	128,8	104,7	105,4	105,9	128,7
2003	106,8	108,6	130,3	177,4	133,9	97,6	98,6	98,6	119,4	128,1	93,6	82,4	114,6
2004	84,3	110,2	117,5	119,9	118,0	106,3	107,3	107,4	107,8	121,3	114,8	96,4	109,3
2005	86,3	97,8	116,6	118,9	114,8	98,9	92,3	93,8	94,3	96,6	96,5	92,9	100,0
2006	91,0	90,1	90,6	113,1	114,6	115,6	115,8	115,7	115,7	116,4	117,1	117,3	109,4
2007	118,9	132,8	152,5	154,6	155,5	160,2	177,5	182,2	186,4	188,5	175,1	155,8	161,7
2008	155,6	174,6	175,2	164,9	144,8								
2009	The i	ndex is ca	alculated th	nus:									
	1=	$\frac{\sum_{i=1}^{n} \frac{p_{ii}}{p_{0i}}}{n}$		With	:	pti p0i n	price price numb	of comp of comp per of rep	any i in the any i in the orts	e reportin e basic ye	g month t ear 0 (= b	: (= repor asic price	ting price e)
ГП				S	olid W	aste M	anager	nent			10	i Leibni 2 Univer	z rsität

102 Universität 1004 Hannover

RP Collection

- RP cannot be recycled any number of times (fibre shortening); • \rightarrow paper leaves the loop via sanitary paper or energetic utilisation
- Collection costs depend, for instance, on the bulk density •
 - print products
 - mixed domestic RP

cardboard/carton

in MWC in large containers approx. 250 kg/m³ 80 - 160 kg/m³ 100 - 200 kg/m³ 40 - 60 kg/m³

Recycling glass and Recovered paper - Container

Overall costs in relation to the realised collection system There are massive variations on the market

515

Solid Waste Management

Dr.-Ing. Dirk Weichgrebe

Leibniz

Universität Hannover

- RP collection
 - ca. 50 % commercial through private disposal contractors (BVSE or BDE)
 - ca. 50 % domestic (lower qualities) through public disposal contractors/DSG: packaging and print products RP 25% / 75% Fee regulation):
 - Bundle system / loose
 - RP Depot Container
- 40 60 kg /P⋅a
- 40 60 kg /P⋅a 50 - 90 kg /P⋅a
- RP Mono-Container (collection)

	19	92	19	94	19	97	20	000	
	m Mg/a	%							
Depot container	1,51	39,0	2,47	49,3	2,814	49,2	2,610	48,5	
Bundle collection	0,55	14,2	0,35	7,0	0,395	6,9	0,285	4,6	
RP Mono-Container	1,71	1,71	1,75	34,9	2,025	35,4	2,958	47,1	
Other systems	0,01	2,6	0,44	8,8	0,485	8,5	0,432	6,8	
Sum	3,87	100	5,01	100	5,719	100	6,285	100	
Packaging paper	1,36	35,1	1,40	27,9	1,086	19,0	1,404	22,3	
Graphic paper	2,51	64,9	3,61	72,1	4,633	81,0	4,881	77,7	
Sum	3,87	100	5,01	100	5,719	100	6,285	100	

Solid Waste Management Dr.-Ing. Dirk Weichgrebe

RP Sorting

• Prior to fine processing at the paper mill, sorting according to

- components which are alien to paper
- undesirable types of paper
- Positive sorting of de-inking goods
- Manual sorting performance:
 - 500 1500 kg/sorter · h Negative sorting of brown imbued PCC
 - 250 400 kg/sorter · h Positive sorting of de-inking goods or magazines

RP Pollutant Contents

		Separatel collected mixed recovered paper	Sorting fraction Paper/Cardboard from domestic waste (GREINER, 1983)	Compost Category 1 according to Bio-Waste Ordinance 98
Water contents	Weight %	6 - 8	24,0	
Caloric value Ho	kJ/kg DS	15.000 - 18.000	16,3	
Caloric valueHu,raw	kJ/kg	14.000 - 16.000	10.950	
Ignition loss	Weight %	85 - 90	86,8	
Carbon	Weight %	41	40	
Iron	mg/kg DS	1000 -2000	2000	
Lead	mg/kg DS	10 - 50	125	100
Cadmium	mg/kg DS	0,1 - 1	1,6	1
Chromium	mg/kg DS	3 - 40		70
Copper	mg/kg DS	20 - 30	100	70
Mercury	mg/kg DS	<0,1	0,15	0,7
Zinc	mg/kg DS	50 - 300	375	300
Fluoride	mg/kg DS	-	31	
Chlorine	mg/kg DS	1300	2925	
Sulphurousl	mg/kg DS	-	900	
PCB	mg/kg DS	0,01 - 6		
PCDD	ng TE/kgDS	0,17 - 12		

- no RP from waste
- in the waste, RP is a fraction with low heavy metal contents; lead in printing dyes = in the past before 1985
- organic pollutants possible from chlorine bleaching, pigments, paper finishing

Solid Waste Management Dr.-Ing. Dirk Weichgrebe

RP Processing as Reversal of Production and Product Usage according to BAUMGARTEN, 1987

Process Stages of Recovered Paper Processing according toh BAUMGARTEN, 1987

- De-inkability limited
 → pre-sorting
- Sticky impurities
- there are special processing plants for for beverage composite cartons from DSG-LWPs (Fibre; PE, Al)

Ган

Solid Waste Management Dr.-Ing. Dirk Weichgrebe

Pulper

Eco-Balance of Paper Production with/without RP

RP Utilisation outside the Paper Industry

UTILISATION	PROCESS	APPLICATION PURPOSE
Using the fibre properties	Dry processing	Chipboards, palettes, moulded articles, heat insulation material, litter for livestock farming
	Wet processing	Fibre boards (e.g. Rigips, Fermacell); flower pots, planting tubs
Using the chemical	Hydrolysis, fermentation	Glucose, alcohol, protein
properties	Pyrolysis	Gas, oil, coke
Energetic utilisation	Incineration (pyrolysis)	Steam, electric energy (energetic utilisation)
	Tile production	Porous tiles (expanding agents)
Biological utilisaiton	Composting	Compost

Recovered Glass

Solid Waste Management Dr.-Ing. Dirk Weichgrebe

Behaviour of Disposed Waste Glass

- Inert, not elutable
- The weight cannot be reduced through treatment (GIP or MBT)
- If disposed: high landfill area demand; no emissions, however
- Material utilisation ideal, as there is as good as no quality loss in the recycled material and as the melting of RG makes for energy saving compared to the raw material
- Different recipes for different glass products; different glass colours for container glass

Solid Waste Management Dr.-Ing. Dirk Weichgrebe

Leibniz Universität

Hannover

Composition of Glass

Raw Material Ratios in Container Glass

ca. 60% quartz sand SiO_2

ca. 18% Soda Na_2CO_3

ca. 15% limestone CaCO₃

ca. 6% feldspar

after elusion of the CO_2 Na₂O and CaO

ca. 1% refining agents, discolouring agent (selenium), Dyes: chromic oxide for green glass, coal dust for brown glass

Container Glass Production

Moulding of Container Glass

- top: Blowing of the pre-form/of the parison from glass drops
- Moving of the parison into the finished forging

 Blowing of the finished forging

Glass Machine

Solid Waste Management Dr.-Ing. Dirk Weichgrebe

R	collection
• Potential for container glass:	35 - 50 kg/P⋅a
Bulk density	
 unbroken in RG container 	250 - 300 kg/m³
 RG shards broken in a baffle m 	ca. 1.500 kg/m³
RG collection	
 RG container (delivery system). 	parate setting up according to colours
white/brown/green;	25 - 45 kg/P·a
 RG mono-container (collection s 120/240/660/1100; canteens, homes, and in multi-f 	em, for instance with restaurants); LWC
 RG Yellow Bag (collection syste in areas with residual waste ba recommended 	; 40 to 50 L PE bags; 10 - 25 kg/P⋅a emoval; combination with container collection
• Revolving emptying container, de if possible sound-proofed; emptying trucks with colour-separated supers	ry system as 1-5 m ³ GRP or steel plate container, hook crane with drop bottom outlet into open ture with up to 50 m ³ volume.
Container with integrated colour sep	tion were tested, but could not prevail.
Material utilisation also for plate gla	•
 Production > 2.000.0 	t/a
Plate glass waste ca. 500.0	/a; of which utilised ca. 300.000 t/a

Recycling glass – Container and Truck Loading Process

Foreign Material in RG / Quality Requirements

- Foreign material in the RG which must be separated:
 - organic substances, i.e. paper and plastic, which locally disturb the redox balance
 - iron, lead, and tin destroy fire-proof vat bottoms
 - <u>aluminium</u> remains in the glass vat, reduces SiO₂ and causes silicium inclusions in the glass, which in turn reduces the pressure resistance)
 - **porcelain, ceramics, and stones** \rightarrow inclusions in the glass

Parameter		Requiren	uirements	
		not conditioned	conditioned	
Purity in weight %	According to specifications Sum of excluded foreign material; Sum of excluded glass qualities Off-colour ratio (in white), of which $\leq 1,00$ % green and $\leq 2,00$ % brown Off-colour ratio (in brown) Off-colour ratio (in green)	≥ 97% ≤ 1,00 % ≤ 2.00 % ≤ 3.00 % ≤ 8.00 % ≤ 15.00 %	≤ 0.2 % ≤ 5 % ≤ 10 %	
Excluded glass qualities	Quartz glass (e.g. laboratory appliances), fireproof glass (e.g. crockery), glass ceramic (e.g. cooking plates)	≤ 0.15 %		
	Glass from electronic appliances (e.g. screen glass)	≤ 0.20 %		
	Lead crystal Wire glass Car glass (particularly laminated glass) Plate glass	≤ 1.00 % ≤ 0.20 % ≤ 0.20 % ≤ 2.00 %		
Excluded foreign material	Clay jugs and bottles, other ceramics, stones, slags, earth Metals (including bottle caps, sleeves, lead capsules) other waste (incl. other packaging materials)	≤ 0.15 % ≤ 0.35 % ≤ 0.50 %	≤ 25 g/t ≤ 1-5 g/t	
hyg. harmful waste	Principally lead to refusal of acceptance			
Manner of delivery	If possible, from direct deliver without compacting			

Solid Waste Manage Dr.-Ing. Dirk Weichgrebe 1 1 Leibniz 1 0 2 Universität 1 0 0 4 Hannover

RG Utilisation outside of the Container Glass Industry

- Only a small ratio of the RG is utilised outside the glass production industry (due to cheaper competitor products):
 - Glass wool, used, but competition to rock-wool mineral fibre
 - Foam glass high-grade insulation material
 - **Glasphalt** aggregate in blacktop for road construction; competition to high-quality split and crushed sand
 - Glass reflector pearls aggregate to reflective paints
 - Glass powder, glass sand abrasive material
- Plate glass shards to plate glass
- Television tube glass unsuitable as container glass due to the high lead oxide contents (< 100 ppm lead according to § 13 Packaging Ordinance).

Solid Waste Management Dr.-Ing. Dirk Weichgrebe

Scrap Plastic

Types of Plastic

- <u>Thermoplastics:</u> linear or branched polymers (chains of monomers), whose polymer chains are not cross-linked and which can be plastically softened reversibly by heating up to flowability. Recycling is possible through melting.
- <u>Duroplastics</u>: synthetic plastics, hardened from the reaction of several preproducts which are capable of flowing. The hardness changes only little before the category temperature of polymer degradation is reached.
- Elastomers: non-meltable, permanently elastic plastics (e.g. SBR).

Plastic	Short form	Application Areas				
Thermoplastics						
Polyethylene	PE (HD/LD)	Foils, moulded parts, mass produced articles; construction elements, e.g. pipes				
Polyethylenterephthalate	PET(P)	Beverage bottles, wear-resistant elements for precision mechanics, housings for appliances, foils				
Polybutylenterephtalate	PBTP	Friction bearings, castors, housings for spark plugs				
Polypropylene	PP	Technical parts, e.g. in cars; pipes				
Polyvinylchloride	PVC	Foils, window frames, pipes, cable insulation; 57 weight % chlorine				
Polystyrene	PS	Disposable cups, household articles, injection moulded parts, styrofoam				
Polyamide	PA	Cogs, fibrous materials, wall dowels, housings for electric appliances				
Polymethylmethacrylate	PMMA	Tail lights, sanitary articles, watch-glasses				
Polycarbonate	PC	CDs, round rods, bottles, ampullae				
Duroplastics						
Polyester	UP	Casting resin, lacquers, fillers				
Epoxy resin	EP	Lacquers, casting resin, glues				
Phenolic resin	PF	Electric insulation materials, hardboards, casting and paint resins, wood glue, chassis parts (Trabant)				
Melamine resin	MF	Binding agents for moulding materials, wood glue, lacquers				
Urea resin	UF	Binding agents for moulding materials, wood glue, lacquers				
Polyurethane	PUR	Casting compounds, coating colours, foams, lacquers				
Elastomers						
Natural caoutchouc	NR	Soft and hard rubber, hoses, sealings				
Styrol-butadien-caoutchouc	SBR	Car tyres				
Polybutadiene	BR	Car tyres, lining material, insulation material				
Polychlorpropene	CR	Conveyor belts, cable cleading, foam rubber, protective clothing				

Solid Waste Management Dr.-Ing. Dirk Weichgrebe

l l Leibniz l o 2 Universität Hannover

Application of Plastics

Application example	Plastics used	Application example	Plastics used
Crockery, cutlery, kitchen articles, housings	PE, PP, PVC, PA, PS, PC, EPS	Beverage bottles for CO ₂ containing drinks	PET
Tablecloths, coverings	PVC soft	Diffusion-tight composite foils for foodstuff	PE (Al-kaschiert), PET, PVDC
Bathroom furnishing	PVC	Shrink-wrap bags for packaging	PE, PVC (weich)
Carrier bags	PE, (PVC)	Boil-in-bag package	PE
Hollow bodies (large containers, bottles, canisters)	PE, PP, PVC	Tubular bags for liquids	PVC, PE
Packaging foils	PE	Packaging cans, cups, fruit baskets, cutlery trays	PE, PP, PVC

Лан

Plastic waste in Germany in 2003

Types of waste	Amount in kt	Post-consumer in kt	Producers + fabricators in kt
PE-LD/LLD	947	822	125
PE-HD/MD	469	392	77
PP	425	272	153
PS/EPS	309	136	61
PVC	492	356	148
Styrol Copolymere	75	48	27
PMMA	31	20	11
PA	72	37	35
PET	193	162	31
Other thermoplastics	96	56	40
Durolastics (incl. PUR)	458	278	180
non classifiable	438	438	0
Total	4005	3117	888

Ган

Solid Waste Management Dr.-Ing. Dirk Weichgrebe l l Leibniz to 2 Universität to 4 Hannover

Utilization of Plastics

In Germany, one of the biggest producers of plastics worldwide, about 16.8 m tons of plastics were produced in 2003, ca. 10.6 m tons were consumed. More than 60% of all processed plastics are thermoplastics, such as

 Polyethylene PE 	(2.74 m t),
 Polyvinylchloride PVC 	(1.52 m t),
 Polypropylene PP 	(1.71 m t)
 Polystyrene PS 	(0.60 m t)
 Polyethylenterephthalate 	(0.41 m t).

About 10% of the total processed amount are thermoplastic construction plastics, such as polyamide PA, polycarbonate PC, or acrylnitrilbutadienstyrene ABS, ca. 30% are duroplastics.

In 2003, a total of about 4.0 m tons of plastic waste were produced in Germany, of which 2.34 m t (58.4 %) were **utilised**

(33.7 % material utilisation, 10.0 % resources utilisation, and 14.7% energetic utilisation), and

1.67 m t (41.6 %) were **disposed**

(22.0 % depositing and 19.6 % incineration without waste heat usage).

Chemical Components and Caloric Value of Plastics

Type of Plastic	Ratio in weight %						Caloric value
	С	Н	0	Ν	CI	F	kJ/kg
PE	85,7	14,3	-	-	-	-	46.000
PP	85,7	14,3	-	-	-	-	46.000
PS	92,3	7,7	-	-	-	-	40.500
PUR	62,1	3,4	18,4	16,1	-	-	24.000
PA	63,7	9,7	14,2	12,4	-	-	33.400
PVC	38,4	4,8	-	-	56,8	-	18.000
PTFE	24		-	-	-	76	8.400
Mixed plastics in domestic waste							18.300 (H _u) 26.200 (Ho)

- Plastics also contain:
 - Softeners (organic compounds, e.g. in PVC soft),
 - **Stabilisators** (heavy metal-containing with Pb, Cd (mainly in construction parts made of PVC hard), Zn and Sn),
 - Light stabilisers and flame retardants (frequently brominated organic compounds)
 - Colour pigments (mostly heavy metal-containing (Cd (strongly decreasing)), Cr, Cu, Ni, Pb, Zn), and
 - heavy metal catalysts (titanium in PE-HD and PP, chromium in PE-HD).

Solid Waste Management Dr.-Ing. Dirk Weichgrebe Leibniz Universität Hannover

Point of origin	Wa	ste amount	Utilisation amoun	t Utilisation rate
		in kt	in kt	in %
Plastic production		86	81	94
Plastic processing		802	710	89
commercial final consumption	n	1.402	714	51
private final consumption		1.715	833	49
Total		4.005	2.338	58,4
	<u> </u>		Hydration Pyrolysis/	are incinerated
sorted processing	mixed processing	Solvolysis Hydrolysis	thermolysis Gasification Furnace	ļ
Re-granulate Mi I v	ixed plastics, arge, thick- valled parts	Monomer	Oils Gases Waxes	Energy Steam Electric power
(au	Solic	Waste Mana	gement	tit Leibniz to 2 Universi

Plastics used in Waste Incineration

- On average, municipal waste contains 1% PVC;
 - CI ratio in PVC and chlorides are converted in the garbage incineration plant \rightarrow HCI
 - With neutralisation with crystallisation of the salt, CaCl₂ or NaCl are released at stoichiometric conversion, in the following ratios per t of PVC:
 - (23+35)/35 · 0,57 = 0,94 t NaCl or (40+235)/35 · 0,57 = 0,90 t CaCl₂.
 - Due to leaner-than-stoichiometric dosage, there result >1t salt/1t PVC (disposal as special waste)
 - Or utilisation as NaCl in chlor-alkali electrolysis or HCl dilute acid in the industry
- The analysis results (e.g. MARTIN/ZAHLTEN, 1989 and KARASEK et al., 1983) about the production of PCDD/ PCDF or Chlorobenzene emissions through increased PVC contents partly contradict each other. Experiments at the GIP Würzburg (KERBER, 1994) with additions of 7.5 and 15 weight % of plastic residues (and thus PVC contents increased accordingly) showed no deterioration of the raw and clean gas emissions. Obviously, for the "de-novo synthesis" of PCDD/PCDF the chlorides in the remaining waste are sufficient.
- Heavy metals from plastics are an important pollutant ratio in the raw gas emissions, for instance in dusts and flue gas treatment.

Solid Waste Management Dr.-Ing. Dirk Weichgrebe

Plastics in Depositing and Biological Treatment

- Relevant for the depositing and biological treatment of waste:
 - the polymer structure of plastics is generally not bio-degradable, but single auxialary agents and fillers are (e.g. softeners), which may lead to the disintegration of the plastics.
 - according to TASi 1993, plastics cannot be deposited as the IL is GV > 5% and must thus be energetically utilised or thermally treated.
 - for **composting** or fermentation: plastics are screened as extraneous materials and otherwise utilised, also with bio-waste composting.
- Apart from the energetic utilisation of PVC-free plastics, the disposal of plastics is more problematic than that of paper waste or glass waste.

l eibniz

Universität

Hannover

Biologically Degradable Plastics

- Biologically degradable plastics (bio-degradable substances BDS); (DIN E 54900; NARAYAN; WESSLING, both in MENGES et al. (1992)):
 - purposeful working-in of labile points in the polymer chain
 - photochemically degradable plastics (disintegration under UV light)
 - biologically degradable plastics, e.g. on cellulose basis (cellulose diacetate foils, PHB/V (BEZ/ HEYDE, 1996), starch or polycaprolactone (HÄRDTLE et al., 1991; PÜCHNER, 1994). Temperatures for biological degradation adjustable in a range from 20° to 60 °C.
 - Disadvantages of BDS
 - no ecologically high-grade utilistion; neither material nor energetic
 - high price; limited applicability

Trade name	Material	Supplier	on the market as	ca. price
Biopol	natural polyester from PHBV	Zeneca Bio Products	packaging; composting bags	12 €/kg
Bioceta	Cellulose acetate with softenera	Franz Rascher GmbH &Co Chemiwewerkstatt KG	grave candles; packaging	6 €/kg
Flo-pak Bio8	extruded hydroxy-propylated starch	FLO-PAK GmbH	foamed as chips as packaging, padding	25 €/m³
MaterBi	Polyester/starch mixture	Novamont Sales; Eu rope Montesdison Deutschland	biros, ink ribbon cassettes; composting bags	1,5 – 4,5€/kg
Tone-Polymere	synthetic polyester from policapr _o lacton	Union Carbide Chem.		5,90 \$/ kg
Renatur	extruded starch	Storpack; H. Reichenecker GmbH&Co	foamed chips as packaging padding	25 €/m³

Solid Waste Management Dr.-Ing. Dirk Weichgrebe

Systematics of the Disposal Options for Plastic Waste according Härdtle, 1991; extended

Disposal Ways for Scrap Plastic with Priorities

	DISPOSAL WAY	UTILISATION	RECOVERED PRODUCT
1. 2.	Re-granulation/ re-melting homogeneous plastics mixed plastics	material; macro-molecular structure; preservation of crucial ratios of the energetic efforts for production	Re-granulate, manufacturing into plastic products
3. 4.	Hydration Pyrolysis	resources; organic basic structure	Chemical resources; Gas and/or oils
5.	Incineration	energetic; caloric value	Energy
6.	Landfill	Dispensing with material and caloric value	

Solid Waste Management Dr.-Ing. Dirk Weichgrebe

Collection of Scrap Plastic

- SP from plastics production and other industries: large amounts of clean and sorted plastics.
- SP from households: low potential of ca. 15 to 25 kg/P·a, of which < 10 kg/P·a sales packaging covered by DSG
- SP collection rates from households:
 - **before** Packaging Ordinance 1991 only 20%-35%.
 - **after** Packaging Ordinance 1998: the utilisation quota of 60% was exceeded by far at 108% (!!) in 1999 (similar SP).
 - with DSG 97% (600,000 t /a)
- Low bulk weight of mixed SP of only 10-40 kg/m³:
 → high collection costs in /t.
 - Special collection systems for sorted qualities, for instance for
 - styrofoam recycling from trade and via municipal collection points with Big Bags for PS re-granulate,
 - agricultural foils via agricultural purchasing co-operatiaves,
 - telephone and bank cards; CDs (poly-carbonate PC)
 - PVC pipes and construction profiles.

Material Utilisation of Mixed SP Plastics

• If the separation of the single types of plastics is dispensed with, simple process technology is available for the processing and re-moulding as "down"-cycling to mixed plastic products of low quality for underground construction and horticulture.

Solid Waste Management Dr.-Ing. Dirk Weichgrebe

Value-Saving Recycling of SP

- Long-time rupture strength
- Compatibility of different plastics

	PS	SAN	ABS	PA	PC	PMMA	PVC	PP	PE-LD	PE-HD	PET
PS	1										
SAN	6	1									
ABS	6	1	1								
PA	5	6	6	1							
PC	6	2	2	6	1						
PMMA	4	1	1	6	1	1					
PVC	6	2	3	6	5	1	1				
PP	6	6	6	6	6	6	6	1			
PE-LD	6	6	6	6	6	6	6	6	1		
PE-HD	6	6	6	6	6	6	6	6	1	1	
PET	5	6	5	5	1	6	6	6	6	6	1

1 = easily mixable; 6 = hardly mixable

Value-Saving Recycling of SP – Miscibility and Blends

- no miscibility of standard plastics
- For special plastics, it is possible to produce copolymerisates and blends by adding compatibility-inducing agents

ГЛ

Solid Waste Management Dr.-Ing. Dirk Weichgrebe

Processing into Homogeneous SP (1)

- Up to 2000, the SP collected in the DSG were mainly separated into the following categories:
 - Foils
 - Hollow bodies, bottles
 - Cups, blisters
 - Foam
 - (Composites)
- Mechanical separation by density

Processing into Homogeneous SP (2) - AKW-Method in Coburg

Ган

Solid Waste Management Dr.-Ing. Dirk Weichgrebe l l Leibniz Universität Loo 4 Hannover

Processing into Homogeneous SP - Infra-Red (NIR-) Spectroscopy

Extruder

Solid Waste Management Dr.-Ing. Dirk Weichgrebe

Chemical Recycling / Resource Utilisation

- As alternative to the material utilisation → resource utilisation with recovery of chemical resources, particularly oils, and partly also gases, through
 - Alcolysis, applied, for instance, to PUR foam or car seat scrap
 - Hydrogenation, e.g. in Coal-Oil-Plant Ltd. Company, Bottrop (KAB) → Comminuted and agglomerated DSG plastic is first dehalogenated to ca. 2000 ppm and then hydrogenated together with refinery vacuum residues at 300 bar hydrogen pressure and 475°C. → The resulting high-grade Syncrude oil is used in refineries as feedstock for the polymerisation.
 - Dehalogenation and ensuing distillation at BASF also runs with comminuted and agglomerated DSG plastic, first dissolved in plastic oil at 300° C, then degraded at 400° C through visbreaking and separated through distillation.
 - Preliminary degradative extrusion for degradation and dehalogenation with ensuing steam cracking Application of DSG plastics after mechanical processing or after degradative extrusion as reducing agent in blast furnaces (e.g. at the steel works in Bremen for 80.000 t/a) = resources recycling
 - Pyrolysis to produce chemical resources in the shape of gas and oil

Leibniz Universität

Hannover

Utilisation of Resources from Plastics in Blast Furnaces

Comparison of the Reaction Principles of Pyrolysis and Hydrogenation according RAUSER, 1992 and LÖFFLER, 1989

Pyrolysis e.g. 700°C; O ₂ elimination; pressure-less; distribution of H ₂ according to chemico- physical laws	Hydrolysis $300^{\circ}-500^{\circ}C;$ $100 \text{ to } 400 \text{ bar H}_2;$ cracking reaction with saturation of the ruptures with H ₂
H^{-} \mathcal{F}_{H} and $\langle \bigcirc \rangle$	ННН Н -сссн and Н -с ннн н
Methane, olefines, aromatics	Preservation of chains
and coke	

	Pyrolysis Weight %	Hydrogenation Weight %
Methane	23.1	1.1
Ethene	19.0	-
Gaseous hydrocarbons	20.5	7.0
Chain-like hdrocarbons	4.9	87.7
Benzene	16.6	0.2
Toluol, xyloles	7.8	0.2
Higher aromatics	8.1	-
High-boiling hdrocarbons	-	3.8

CD Recycling

- CDs accumulate at various stages during the production
- In the production of the pure polycarbonate disk
- During the aluminisation
- During the varnishing
- Confiscation of illegal pressings

Ган

Solid Waste Management Dr.-Ing. Dirk Weichgrebe

CD Recycling

 CD consist predominantly of poly-carbonate (more than 90%) and small amounts of aluminium and lacquers connection between poly-carbonate and aluminium

For the separation of the three substance groups, the aluminium layer must be removed through dissolution

Leibniz Universität

Hannover

CD Recycling

