Urban Water Management

Within the module: Ecology and Water Resources Summer 2012

April 24 – May 16, 2012

Institut für Wasserwirtschaft, Hydrologie und landwirtschaftlichen WasserbauLeibniz Universität Hannover

Part 3

Prof. Dr.-Ing. Hans-Reinhard Verworn

Overview Overview Overview

Contents today: Drainage

Waste water plus storm water

- **a** amount and pollution
- **o** drainage systems
	- \rightarrow combined systems
	- \rightarrow separate systems
- \bullet dimensioning of pipes
- **o** storage
	- \rightarrow stormwater overflow tanks
	- \rightarrow stormwater retention tanks
- **d** dimensioning of tanks

Domestic plus industrial plus external

a amount (domestic)

= depending on habitants connected to the sewer system

= equivalent to water consumption (disposed = delivered) consumption e.g. 140 l/(C*d) for design: often higher (safety margin)

Domestic plus industrial plus external

- amount (industrial)
	- = individual, often expressed in "population equivalents" (PE)

PE_{ind.} = waste water of plant / waste water per capita Example: discharge of industrial plant: 6000 l/d

PEind. = 6000 / 150 = 40

• amount (external)

= water not wanted in the system

Origin: cracked pipes, incorrect connections etc.

External water

Where does it come from?

Domestic plus industrial plus external

• pollution (domestic)

mean value (rule of the thumb) = 600 mg/l COD load per capita: 150 l/d $*$ 600 mg/l = 90 g/d COD

• pollution (industrial)

= individual, often expressed in "population equivalents" (PE)

 $\mathsf{PE}_{\mathsf{ind.}}$ = pollution load of plant / pollution load per capita

Example: pollution load of industrial plant: 6000 l/d * 1200 mg/l COD = 7200 g/d COD $PE_{ind.}$ = 7200 / 90 = 80

• pollution (extraneaous)

 $=$ generally not accounted for, assumed to be "clean"

Design runoff

espec. for subcatchments: population density (counted or assumed) is used (total or sub-catchment area is easy to obtain)

- $\mathsf{Q}_{\mathsf{d}24}$ = mean discharge per day
- Qdx= daily discharge compressed into x hours

Daily variations of runoff and concentration

Design runoff

espec. for subcatchments: population density (capita per ha) (counted or assumed) is used $($ \rightarrow total or sub-catchment area is easy to obtain)

- $\mathsf{Q}_{\mathsf{d}24}$ = mean discharge per day
- Qdx= daily discharge compressed into x hours

often used: normalized values (per ha):

 q_{d24} = 1/(C^{*}d) * C/ha * d/86400 s = 1/(s^{*}ha)

with freshwater consumption = 150 I/(C*d) and 50 C/ha:

 q_{d24} = 150 \star 50 \star 1/86400 = 0,0868 l/(s^{\star}ha)

rule of the thumb: 0,1 l(s*ha)

Storm water

Design runoff

- **o** no defined design load
- **a** rain is a stochastic entity
- \bullet dimensioning not for maximum possible load (inefficient from an economical viewpoint)
- as in hydrology in general:
	- \div feature / attribute plus e.g. water level, volume, runoff
	- ❖ recurrence interval of exceedence T [a]

Storm water

Design

- Define: frequency / recurrence interval
- of what?

- **•** Find: design runoff
- Choose: appropriate diameter / profile (diameter depends on runoff and slope)
- **•** Frequency of a limit state, e.g.
	- \triangleq the pipe surcharging
	- **❖ flooding**

water level at pipe crown or higher

water level at surface

 \rightarrow allow exceedence of limit state at recurrence interval / with defined frequency

History of urban hydrology and sewer design

Industrielle Revolution Industrielle Revolution

- **since 1850: Systematic determination of required diameters depending on**
	- **- drained area**
	- **- connected habitants**

History of urban hydrology and sewer design

- **1851 Mulvaney Relation between rainfall, runoff and area Principle of the rational formula**
- **1889 Kuichling Rational FormulaSewer system for Rochester, NY (1877 - 1889)**
- **1906 Lloyd-Davies Rational formula for the anglo-saxon sphere**
- **1922Imhoff: German version of the rational formula**

1940 Reinhold: statistical rain data analysis Definition of time coefficient φ to allow for change of charted base rainfall intensity r15,1 (15 min, once a year) dependent on duration and frequency

Rational formula

$$
Q_p = C \cdot i_T \cdot A
$$

- Q_p Design peak flow
- C Proportion of effective rainfall
- i i_T mean rainfall intensity of decisive duration and design frequency
- A Catchment area above design point
- t fTime of flow

Storm water

Design

- Design peak flow is dependent on rainfall \bullet
- Assumption: rainfall frequency = runoff frequency \blacksquare
- Consequence: rainfall statistics are needed \bullet

- Needed: long time series of rainfall recordings
- one of the possible ways:
	- **[❖] choose a duration**
	- \dots **move duration-wide window over time series sequence** of data
	- collect all extreme rainfall sums within window

Overlapping rainfall sums

- Needed: long time series of rainfall recordings \bullet
- one of the possible ways: \bullet
- **❖** choose a duration 35 **❖** move duration-wide window over time series 30 sequence of data 25
	- **❖** collect all extreme rainfall sums within window
	- **❖ analyse statistically**

- Needed: long time series of rainfall recordings
- one of the possible ways: \bullet
	- **❖** choose a duration
	- \dots **move duration-wide window over time series sequence** of data
	- **❖** collect all extreme rainfall sums within window
	- **❖** analyse statistically
	- \triangleleft repeat for other durations
	- **❖** smooth parameters over duration

***** result:

Intensity-Duration-Frequency curves \quad \rightarrow IDF curves

Statistical rainfall

1940 Reinhold

$$
r_{D,f} = r_{15,1} \cdot \left\{ \frac{38}{D+9} \cdot \left(\frac{1}{\sqrt[4]{f}} - 0.369 \right) \right\}
$$

time coefficient φ

1990/97 KOSTRA "Coordinated statistical and regionalisation analysis "

> **Statistical rainfall amounts for: D = 15, 60 min, 12, 24, 48, 72 h** $f = 1, 0.1, 0.01 (0.5, 0.2) [1/a]$

Rainfall statistics

KOSTRA demonstration

Open channel flow

Velocity:

$$
v = \frac{4 \cdot Q}{\pi \cdot D^2}
$$

\n $f = \lambda$ = friction factor
\n D = diameter
\n(substitute with 4*R_H for non-circular profiles)

Darcy-Weisbach:

$$
I_e = I_b = I_s = f \cdot \frac{1}{D} \cdot \frac{v^2}{2g}
$$

energy gradient = **b**ed slope = surface slope \rightarrow stationary flow

Prandtl-Colebrook:

$$
\frac{1}{\sqrt{f}} = -2\log_{10}\left(\frac{\varepsilon}{3.71 \cdot D} + \frac{2.51}{\text{Re}\sqrt{f}}\right) \quad \begin{array}{l} \varepsilon = k_b = \text{roughness height} \\ \text{Re} = \text{Reynolds number} \end{array} \quad \text{Re} = v \cdot \frac{D}{v}
$$
\n
$$
v = \text{kinematic viscosity}
$$

Dimensioning of pipes

wanted: diameter Dgiven: design runoff Q given or choose: gradient roughness height

should not be less than 0.01% (1 in 10.000) typically $k_b = 0.25$... 1,5 [mm]

Solution:

by iterative calculation or tables or nomograms

Design principles

sufficient minimum velocity

v > 0,2 m/s to avoid deposition and to keep the settleable solids in suspension gradient: I **> 0,01% (1 in 10000)**

appropriate diameter and profile

sufficient water depths at minimum flow (during the night)

pipe crown line continuation

when diameter increases

or

pipe base line continuation

when diameter decreases

Separate systems

a) the sanitary sewer system

- Design load: well defined by \bullet
	- **•** water consumption
	- **E** connected habitants
	- **additional dischargers (industry)**
- uncertainty: external water \bullet
- branched system with treatment plant as endpoint \bullet
- impact on receiving waters \blacksquare
	- **quasi stationary flow**
	- **quasi stationary concentrations of pollutants**

Separate systems

b) the storm water sewer system

- Design load: dependent on \bullet
	- **F** rainfall statistics
	- **design frequency**
	- **Connected area**
- \bullet distributed system with multiple endpoints
- impact on receiving waters \blacksquare
	- **hydraulics**
	- **pollution**

Seperate systems: storm water sewer system Impact on receiving waters

- **•** Hydraulic impact
	- **direct discharge of stormwater runoff into the river**
		- \rightarrow high peak flows
		- \rightarrow hydraulic stress
	- **Counter action: storm water detention tanks / basins**
		- \rightarrow temporary storage of storm water
		- \rightarrow reduction of peak flow
- **a** Pollution
	- **generally no treatment**
	- **storm water is not clean**

Storm water pollution

• For impervious areas (example: Germany): assumed wash-off:

600 kg COD per ha per year

with annual rainfall $= 800$ mm and storm water runoff $= 560$ mm

 \rightarrow mean storm water concentration:

$$
C_r = \frac{600 \, kg/(ha/a)}{560 \, l/m^2} = 107 \, mg/l \quad COD
$$

- **a** actual concentration varies
	- **from event to event**
	- **•** within the event

Combined systems

- Design load: combined loads from \bullet
	- waste water
	- storm water
- distributed system with multiple endpoints (overflow outlets) \blacksquare
- impact on receiving waters \blacksquare
	- **hydraulics**
	- **pollution**
	- **quasi-stationary as well as sporadic**

Combined systems

- Design load: \bullet
	- waster water **plus** storm water
- Treatment plant has limited capacity, \bullet generally 2 .. 3 times dry weather flow
- **Excess runoff in the sewer system:**
	- has to be disposed by "overflow" into receiving waters (river)

intended, designed and appropriately constructed

- **Example 1 at the treatment plant or on the way**
- Combined sewer overflow is a non-neglectable pollution source = waste water diluted by storm water
- **e** generally no bio-chemical treatment

No treatment at all ???