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Abstract. This work is devoted to the development of a low-pressure reactive micro-

hydroelectric power plant that operates independently from the general power supply. 

Impellers of a reactive hydro turbine proposed for a micro-hydroelectric power station 

includes a curved confusor nozzle. In this design, the cavitation effect practically does 

not affect the impeller system. In the turbine, the above-mentioned drawbacks of the 

existing turbines are minimized. The results of theoretical calculations and tables, 

graphical dependencies of an experimental reactive micro-hydroelectric power station 

are presented. 

1. Introduction 

It is known that the main part of existing rivers, channels, and sources of hydroelectric power have 

low heads. Today almost all over the world the use of this hydroelectric potential for the purpose of 

generating electricity is of particular interest and an urgent task in the field of hydropower, the 

efficient use of environmentally friendly sources of hydroelectric power is also one of the priority 

tasks of economic development [1, 2]. 

In the work performed the main part of a micro-hydroelectric power plant using water flow low – 

pressure turbines consists of parts with a bucket, propeller, vane impeller, and the improvement they 

aim to change the angle of water impact on the blades, changing the curvature of the surface of the 

blades and to determine the optimal values of their sizes [3 – 6]. 

The existing designs of jet hydro turbines (radial-axial, propeller, rotary-blade, two-pin) are 

characterized by the fact that they work effectively at heads greater than 4 m [7 – 10]. 

The analysis of the source shows that propeller turbines have a significant disadvantage, which is 

that their efficiency changes sharply with changes in load, and the zone of high efficiency values is 

observed only in a narrow range of power changes. This disadvantage significantly reduces the 

efficiency of propeller turbines when used in systems with an energy deficit [11]. At low heads, the 

efficiency of these turbines decreases sharply, which gives an unsatisfactory result in a low-pressure 

watercourse. 

As follows from the above, the problem of creating new hydro turbines that provide electrical 

energy with high efficiency in low-pressure water flows has not been solved. Therefore, the 

importance of developing new designs of micro-hydroelectric power plants that work effectively in 

low-pressure water flow has been identified. 
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2. Methods 

At the suggestion of the authors of this work, the solution to this goal is achieved by the fact that in a 

reactive low - pressure hydraulic turbine, containing an impeller with channels for water outflow and a 

stator with reflectors to increase efficiency by improving the reactive recoil and simplifying the design 

the impeller is made in the form of a cylinder, blades, and channels with an outlet nozzle for the 

outflow of water, located on the same horizontal plane of the bottom of the working cylinder. The 

channels for water outflow represent a concave conical in cross-section of the pipe, located 

perpendicular to the inner radius of the impeller, which has an outlet nozzle, allowing the water flow 

coming out of the nozzle to be directed perpendicular to the tangent plane, drawn to the point of the 

center of the arc of a concave and vertically mounted circular – cylindrical reflector [11].  

The water flow inside the cylinder moving from the center along the radius of the impeller acts with 

active forces on the inner blades of the nozzle and during further movement is reflected from the inner 

wall of the nozzle and directed to the outlet giving a reactive force (Fig.1). 

When water moves in the transition from the Central cylinder to the nozzle the water flow branches 

into N the number of the nozzle, since the area is a member of the water nozzle greater than the area of 

the Central cylinder so there is a reduction in the average water flow rate and pressure loss due to the 

rotation of water at 90°. Taking this into account, solving the Bernoulli equation for the velocity V3 of 

water entering the nozzle, we obtain [12]: 

𝑉3 = √𝑉2
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When solving the Bernoulli equation for the average water velocity at the outlet of the nozzle, we get 

the following result: 

Vс=V3{
𝑆3

𝑆с
− √(

𝑆3

𝑆с
− 1)

2
− 𝜉900                             (2) 

For the water pressure H0=2 m, and the speed at the entrance of the water flow to the turbine 

VC=5.95 m/s, d=0.273 m, at a temperature of 15°C, the coefficient of dynamic viscosity will be 

considered equal to n=0.0114, we get the Reynolds number [13]: Re=140921 (105≤ 𝑅𝑒 ≤108). 

Since the water flow inside the turbine has a vortex character, to calculate the coefficient of 

hydraulic friction, you can use the formula proposed by Nikuradze: 

𝜆 = 0.0032 + 0.22𝑅𝑒−0,237     (3) 

When Re=140921 λ=0.0165, then the pressure loss will be determined as follows: 
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here L is the distance to which water flows. 

From (6) it can be seen that at low pressure, due to friction during the turbulent movement of water 

inside the turbine, a maximum of about 6% -7% of the kinetic energy of the liquid flow is lost. 

To calculate the pressure loss when branching water, the geometric shapes, and sizes of all the 

nozzles, their water consumption is considered the same, then to calculate the pressure loss, we get the 

following expression: 

ℎ𝑏−𝑣 =
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Solving equations (3)-(6) together, we find the total coefficient of energy loss when the water flow 

enters the nozzle: 

   𝜉𝑐𝑜𝑒𝑓 = 1 +
2𝑆2
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All the components of the impeller and the water inside it spin together. Their moment of inertia 

relative to the rotating shaft is calculated by integration. Table 1 shows the results of the theoretical 

calculation for the prepared prototype: 

 

Table 1. Results of calculating the moment of inertia of the jet turbine impeller 

№ I1 I2 I3 I4 I5 I6 It (kg*m2) 

1 2.371787 2.507981 1.899842 7.412789 0.24357 0.30396 18.18973 

 

In the construction under consideration (Figure 1) the movement of the impeller occurs under the 

action of a reactive force F, then the moment of rotational force is obtained from the General theorem 

about the change in the kinematic moment of a solid [13]: 

.  (7) 

The reaction force F acting on point A in Fig.1, will be equal to the geometric difference between 

the pulses of the amount of water entering the nozzle and the amount of water leaving it:    

 

                      𝐹 = 𝐾𝑐 − 𝐾3; 𝐾3 = 𝜌𝑆3𝜗3
2;      𝐾𝑐 =  𝜌𝑆𝑐𝜗𝑐 

2;     𝐾3 = 𝐾𝑟𝑡 = 𝑃𝑠3
𝑣𝑟𝑡

2   (8) 

 

F=Kc-(-K3cosα)=Kc+K3cosα                                               (9) 

 

 
Figure 1. Diagram of the horizontal section of the hydraulic turbine 

impeller (top view): 1 is Central guide blade; 2 is Central water inlet 

pipe; 3 is internal nozzle blades; 4 is hydro turbine nozzles 

Using formulas (7)-(9), the following formula is obtained for the cyclic frequency of the impeller ωz: 

    cos1233  ccczcccz RNRRNM
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here Rc is the distance from the axis of rotation to the center of the nozzle, where the water comes out; 

rc is the radius of the place where the water exits the nozzle; ϑ3, ϑc are the speed of the water at the 

entrance to the nozzle and at the exit from the nozzle, respectively. 

For example, for local resistance to water to be minimal, the following condition must be met: 

𝑆3

𝑆с
≥ √𝜉900 − 𝜉2                   (11) 

here, Sc is the output cross-section of the nozzle; ξ90 is the coefficient of resistance when turning the 

water by 900, and ξ2 is the coefficient of resistance at the confusor section of the nozzle. 

3. Results and Discussions 

Theoretical analyses were performed for the proposed design, and the dependence of the torque of the 

forces and the efficiency of the hydro turbine on the water pressure was obtained. For rice.2 shows 

their graphical relationships. 

With increasing H0 due to the resistance at the turning points in the hydro turbine, the loss of energy 

increases in proportion to the square of the speed. To ensure that these energy losses are minimal, 

condition (11) must be met.  Table 2 shows the corresponding energy values of the hydro turbine 

obtained by theoretical calculation. 
 

 

 

 
Figure 2. a) Graph of the dependence of the efficiency of the micro-hydroelectric turbine on the 

water head; b) the dependence of the efficiency of the torque hydro turbine on the water head 

 

Changes in the energy characteristics of a hydro turbine in relation to changes in its size can be 

analyzed based on the data in table 2. Table 2 shows that when the water pressure increases, the speed 

of the outflow of water also increases, and as a result, a lot of water is consumed. This leads to the fact 

that in places where the volume of water consumed is insufficient, the hydro turbine operates with low 

energy indicators. Therefore, with a constant amount of water, changing the size of the components of 

the hydro turbine, according to the water pressure, leads to an increase in its efficiency. 

Figure 3 shows the dependence of the efficiency of the hydraulic turbine on the output radius of the 

nozzle. It is known that, if the size of the hydraulic turbine is unchanged, an increase in the head will 

lead to an increase in the amount of water flow due to an increase in the speed of water output. As a 

result, the hydro turbine operates with low efficiency. The graph shows that the high efficiency of the 

hydraulic turbine is observed only at a critical value of the radius of the nozzle outlet. Such water 

turbines should be used in places where it is possible to increase water consumption. In the constant 

output radius and number of the impeller nozzle, when the water pressure increases after 5 m, there is 
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a slow increase in the efficiency and power of micro-hydroelectric power plants, accordingly, the flow 

rate of the liquid increases. 

 

Table 2. Changes in the energy parameters of micro-hydroelectric power plants correspond to 

changes in the geometric dimensions of the hydro turbine 

Н0, 

М 

V0,  

m/s 

V1 

m/s 

V3 

m/s 

VC 

m/s 

ω, 

rad/s 

P 

Vт 

M 

Н*m 

FIK 

% 

ns 

rpm 

Q 

l/s 

1 3.26 2.91 3.42 6.33 17.92 988.91 55.19 59.85 166.15 168.43 

2 5.32 4.58 5.14 9.51 32.01 2371.26 74.07 67.54 296.85 178.93 

3 6.79 5.78 6.42 11.87 44.21 3762.53 85.11 70.12 409.96 182.32 

4 7.98 6.77 7.48 13.83 55.36 5156.11 93.14 71.42 513.35 183.99 

5 9.03 7.64 8.41 15.54 65.80 6550.67 99.55 72.19 610.17 184.99 

6 9.96 8.42 9.24 17.09 75.71 7945.73 104.95 72.71 702.09 185.65 

7 10.81 9.13 10.01 18.50 85.21 9341.09 109.63 73.08 790.15 186.13 

8 11.60 9.79 10.72 19.82 94.36 10736.64 113.78 73.36 875.04 186.48 

9 12.34 10.40 11.39 21.05 103.23 12132.33 117.53 73.58 957.27 186.76 

10 13.04 10.99 12.02 22.22 111.85 13528.11 120.95 73.75 1037.20 186.98 

 

 
Figure 3. Dependence of the efficiency of a hydro turbine on the 

output radius of the nozzle 

 

Fiure 4 shows a diagram of the relative location of the output channel 4, nozzle 5, and reflectors 7. 

From the geometric arrangement, it follows that the values of the radius of the impeller Rрk , the radius 

of the stator Rст, the radial height of the nozzle hсп, the radial height of the reflector hот and the radial 

distance between the nozzle point far from the center of the impeller and the point nearest to the center 

of the reflector b b are interrelated by the equation: 

 

Rст - Rрk = hсп + hот + b                                       (12) 

 

The number of reflectors is determined by the formula: 
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𝑘 =
𝜋(𝑅𝑐+ℎо𝑚)

𝑑𝑐
,                                                           (13) 

where Rc+hоm is the internal radius of the stator. 

 
Figure 4. Diagram of the mutual geometric arrangement of 

parts: output pipe, nozzle, and reflectors 

To achieve the maximum torque of the reaction force it is necessary to choose the optimal relationship 

between the values of the radial height of the reflector hot and the radial width of the rectangular 

nozzle dс, the stepwise circular distance between adjacent stator reflectors l and the angle between the 

tangent drawn around the impeller circle at the nozzle center point and the direction of the flow 

coming out of the nozzle β. At a distance b equal to 0.7 dс the maximum speed of the exited flow from 

the nozzle is preserved, in other words, the expression takes place:  

b = 0.7 dс                                       (14) 

Under the condition b > 0.7dс the water flow rate begins to decrease due to scattering and, 

consequently, the reactive force decreases; under the condition b < 0.7dс, hydraulic resistance appears 

due to the narrow space between the nozzle and the reflectors, which also leads to a loss of reactive 

recoil of the water flow. 

For maximum reactive impact water flow is necessary to choose the height of the reflector and a 

circular step-by-step distance between adjacent reflectors of the stator l, the magnitude of which also 

depends on the size of the nozzle and defined by the expressions:  

hот = 2 dс cosβ ;             l = 2dс                                (15) 

Perpendicular to the stress emerging from the nozzle water flow is necessary to choose the value of 

the angle between a tangent circle of the impeller in the nozzle and the direction emerging from the 

nozzle flow β in the range 200 ÷ 30о, what follows from the calculation of the maximum return of the 

reaction force and the experiment conducted on the layout of a hydraulic turbine.  

A specific example of a jet hydraulic turbine design has the following dimensions: - impeller 

diameter 600 mm, - the height of the impeller 100 mm – number of drainage channels 12 pieces, the 

outer diameter of the stator 700 mm, the number of reflectors on the inner wall of the stator 36 pieces 

the diameter of a vertically installed shaft 40 mm, shaft height 1300 mm. The water flow through 

pipes with a diameter of 274 mm is fed to the hydraulic turbine, the shaft of which is equipped with a 

pulley. The rotation of the shaft at a speed of 180÷200 turnover/minutes is transmitted through the 
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pulley and the connecting belt with an acceleration coefficient of ≈ 5.2 to the shaft of the electric 

generator. The created "micro-HPP" with a jet hydraulic turbine has the following technical 

characteristics: - water pressure ≈ 230 mm, - power 4 kW, voltage 220÷230 V, current frequency 50 

Hz, dimensions 700×700×1300 mm, - weight ≈120 kg (Fig.4). The micro-hydro power plant was 

tested in a natural environment with a technical capacity of 3924 W, the water pressure of 2 m, and a 

water flow rate of 200 l/s.  

 

Table 3. Obtained energy parameters from the micro-HPP test 

Experi

ence 

№ 

Water 

consumption 

(l/s) 

Voltage (V) Amperage 

(А) 

Power 

(kW) 

efficiency 

factor 

η ( %) 

The 

rotational 

speed of 

turbine n 

(rpm) 

1 195-200 215 10.37 2.23 57 144 

2 195-200 210 10 2.10 54 141 

3 195-200 225 10.31 2.32 59 145 

4 195-200 218 9.85 2.15 54.5 144 

5 195-200 220 9.54 2.10 54 145 

6 195-200 216 10.18 2.20 56 143 

7 195-200 222 9.81 2.18 55.6 146 

8 195-200 218 10.6 2.33 59.5 144 

9 195-200 224 10.7 2.4 61.2 146 

10 195-200 216 10.2 2.2 56 142 

 Qav =200 218.4 10.16 Pav =2.28 56.2 Nav=144±1.2 

The test results are shown in Table 3. 

As can be seen from Table 3, the average efficiency of the micro-HPP installation was 57%. If the 

efficiency of the generator ηg=0.95, the efficiency of additional installations ηd=0.95, then calculate 

the efficiency of the hydro turbine: 

ΗMHPP=ηg ∙ ηt ∙ ηd                                                 (16) 

𝜂𝑇 =
𝜂𝑀𝐻𝑃𝑃

𝜂𝑔∙𝜂𝑑
=

0.56

0.95∙0.95
100% = 62.05 %    (17) 

The efficiency of the hydro turbine was 62.05%. The difference between the speed of rotation of a 

hydro turbine and theoretical calculations: 

 

∆𝑛𝑠 = 𝑛𝑠н − 𝑛𝑠 = 155.8 − 144 = 11.8 rpm   (18) 

 

The difference in the frequency of the hydro turbine was 11.8 rpm less than the theoretical 

calculations. The result of the experiment differs from the indicator of theoretical calculations by 7.57 

%. The results of the micro-HPP experiment with reactive hydroturbine are shown in Table 3. 
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Figure 5. Prototype of a reactive micro-hydroelectric power 

station 

 

In contrast to the analog [7, 8], when implementing these features, the proposed design of a reactive 

hydraulic turbine has the following advantages (Fig. 5): 

 - the impeller is a cylinder and allowed to RUB against the body only on one upper circle, on the 

lower side of the impeller in the form of a cylinder is mounted on a support, therefore reducing the 

loss of energy to mechanical friction; 

- channel to drain the water from the cylinder of the impeller is rectangular in cross-section shaped 

tube with the tip of a nozzle, and provided mutual perpendicularity of the radius of curvature of the 

impeller and a channel to drain the water, as well as mutual perpendicular directions emerging from 

the nozzle the water flow and the tangential plane passing the center point of an arc mounted vertically 

concave and circular-cylindrical reflector for maximum efficiency torque reaction force; 

- contains an effective shape base that allows vertical drop and rapid runoff of the maximum kinetic 

and potential energy of water; - high speed of water flow in the discharge channels, while the speed of 

rotation of the wheel is equal to the speed of water flow in the channel, which means that the 

maximum reactive return is achieved; - improving the energy and economic performance of the hydro 

turbine by simplifying the design and reducing material consumption. 

4. Conclusions 

For the design of micro-hydro obtaining the following conclusions: 

- the conditions of maximum values of internal active forces by ensuring the impact of water flow on 

the surface of the nozzle vanes at an angle of 250-300 with non-participating in the rotation of the 

impeller jet turbine guide blades efficiency of using the torque of the reaction force; 

- it was found that by effective use of centrifugal forces and Coriolis forces in the impeller of a 

reactive hydro turbine, as well as by reducing internal friction and local resistance by using internal 

guide blades, it is possible to reduce energy losses in the hydro turbine by 20-40%; 

- it was found that the use of low-frequency asynchronous generators in micro-hydroelectric power 

plants with a capacity of up to 50 kW excludes the use of additional elements in the form of power 

loss reducers and multistage pulleys. - developed a new design of micro-hydro, working on reactive 

principle and defines the relationship of technical and economic parameters of its component parts, jet 

turbine, and electric generator; 

- it was found that changing the size of the hydraulic turbine impeller based on the water pressure 

leads to an increase in efficiency, the efficiency, in this case, varies within 59% -75%; for non-variable 
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turbine sizes, in the critical radius of the water outlet nozzle, the efficiency of the hydraulic turbine 

changes accordingly to the water pressure within 56% -67%; 

Thus, the proposed design of a reactive hydraulic turbine is operable, easy to implement, and can be 

used as the basis for creating new high-efficiency vertical hydro turbines for micro and mini 

hydroelectric power plants, as well as for upgrading existing ones.  

The electricity produced in the proposed installation can be actively used far from the electrical 

networks, in remote villages that have a low-pressure hydro potential. 
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