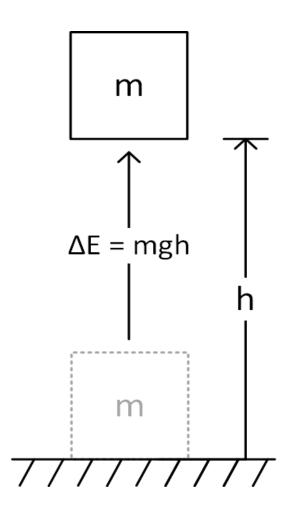


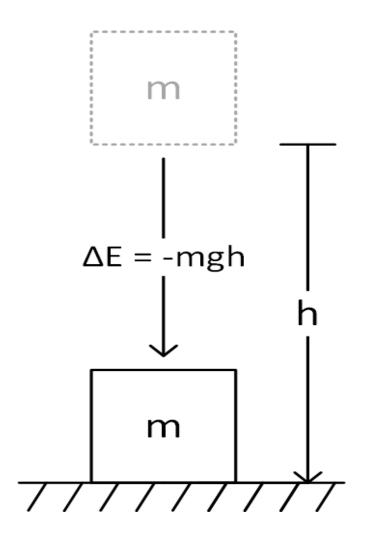
"TITAME" National Research University

PUMPED-HYDRO ENERGY STORAGE

Dilshod KODIROV Professor, Doctor of Science

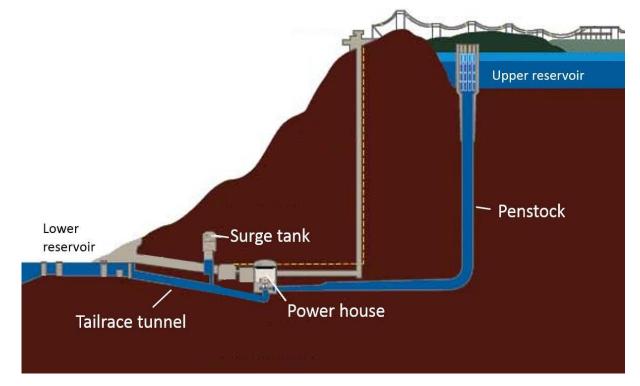

Head of the Department of Power Supply and Renewable Energy Sources <u>kodirov.dilshod@gmail.com</u> <u>d.kodirov@tiiame.uz</u>

- Energy can be stored as *potential energy*
- Consider a mass, m, elevated to a height, h
- Its potential energy increase is


E = mgh

- where $g = 9.81 \, m/s^2$ is gravitational acceleration
- Lifting the mass requires an input of work equal to (at least) the energy increase of the mass
 - We put energy in to lift the mass
 - That energy is stored in the mass as potential energy

- If we allow the mass to fall back to its original height, we can capture the stored potential energy
 - Potential energy converted to kinetic energy as the mass falls
 - Kinetic energy can be captured to perform work
 - Perhaps converted to rotational energy, and then to electrical energy

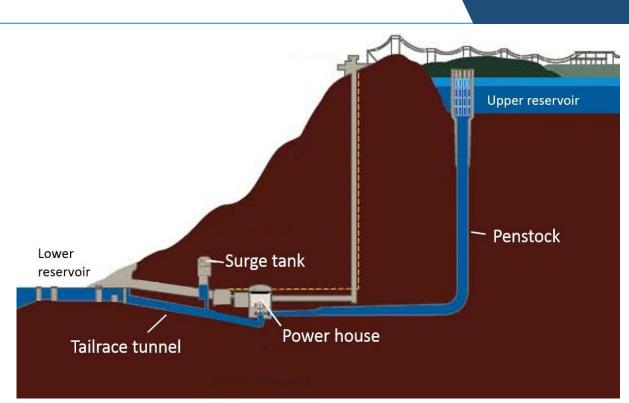

PUMPED-HYDRO ENERGY STORAGE

Renewable Energy Resources

- Potential energy storage in elevated mass is the basis for *pumped-hydro energy storage* (PHES)
 - Energy used to pump water from

a lower reservoir to an upper reservoir

- Electrical energy input to motors converted to rotational mechanical energy
- *Pumps* transfer energy to the water as *kinetic*, then *potential energy*



PUMPED-HYDRO ENERGY STORAGE

Renewable Energy Resources

 Energy stored in the water of the upper reservoir is released as water flows to the lower reservoir

Potential
 energy
 converted to
 kinetic energy

- □ Kinetic energy of falling water turns a turbine
- Turbine turns a generator
- Generator converts mechanical energy to electrical

energy

Renewable Energy Resources

- PHES first introduced in Italy and Switzerland in the 1890's

 - Four-unit (quaternary) systems
 - Turbine
 - Generator
 - Motor
 - Pump

HISTORY OF PHES

Renewable Energy Resources

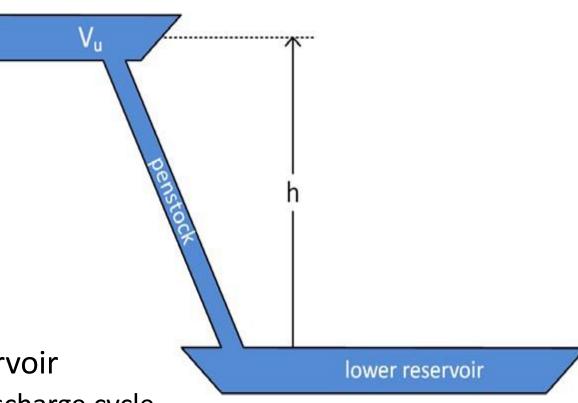
□ First PHES plant in the US:

- Rocky River hydro plant, New Milford, CT
- Water from the
 Housatonic River pumped
 up into Candlewood Lake
- 230 feet of head
- □ 6 billion ft³ of water
- Two-unit (binary) system
 - Reversible pump/turbine one of the first
- 29 MW of generating power

□ PHES accounts for 99% of worldwide energy storage

- □ Total power: \sim 127 GW
- Total energy: \sim 740 TWh
- Power of individual plants: 10s of MW 3 GW
- In the US:
 - □ ~40 operational PHES plants
 - 75% are > 500 MW strong economies of scale
 - □ Total power: ~23 GW
 - Current plans for an additional ~6 GW
 - □ Total energy: \sim 220 TWh

upper reservoir


Two storage reservoirs

- Upper and lower
- Lower reservoir
 may be a river or
 even the sea

Separated by a height, h

- The hydraulic head
- \square Assume $h \gg$ depth of the upper reservoir
 - h remains constant throughout charge/discharge cycle

 \Box Upper reservoir can store a volume of water, V_u

□ **Total stored energy** (assuming it is all at a height, h)

 $E_t = mgh = V_u \rho gh$

where $ho = 1000 \ kg/m^3$ is the density of water

Verifying that we do, in fact, have units of energy

$$[E_t] = m^3 \frac{kg}{m^3} \frac{m}{s^2} m = \frac{kg \cdot m}{s^2} m = N \cdot m = J$$

The *energy density* – energy per unit volume – of the stored water is therefore

$$e_v = \frac{E_t}{V_u} = \rho g h$$
$$[e_v] = \frac{kg}{m^3} \frac{m}{s^2} m = \frac{kg \cdot m^2}{s^2} \frac{1}{m^3} = \frac{J}{m^3}$$

The energy density of the stored water is also the *hydrostatic pressure* at the level of the lower reservoir

$$p = \rho g h$$

$$[p] = \frac{kg}{m^3} \frac{m}{s^2} m = \frac{kg \cdot m}{s^2} \frac{1}{m^2} = \frac{N}{m^2} = Pa$$

This is the *energy density* of the water at the turbine

The rate at which energy is transferred to the turbine (from the pump) is the power extracted from (delivered to) the water

$$P = e_{v}QQ = pQQ = \rho ghQQ$$

where *Q* is the *volumetric flow rate* of the water

$$[P] = \frac{J}{m^3} \frac{m^3}{s} = \frac{J}{s} = MW$$

This is the total power available at the turbine

 Greater than (less than) the power actually delivered to the turbine (from the pump), due to inefficiencies

Note that *power* is given by the product of a driving potential, or *effort*, p, and a *flow*, Q

P = pQQ

□ Similar to power for a *translational mechanical* system

P = Fv

where the effort is force, F, and the flow is velocity, v

□ Or, a *rotational mechanical* system

$$P = \tau \omega$$

where the effort is torque, $\tau,$ and the flow is angular velocity, v

- Pumped hydro plants can supply large amounts of both *power* and *energy*
- Can quickly respond to large load variations
- □ Uses for PHES:

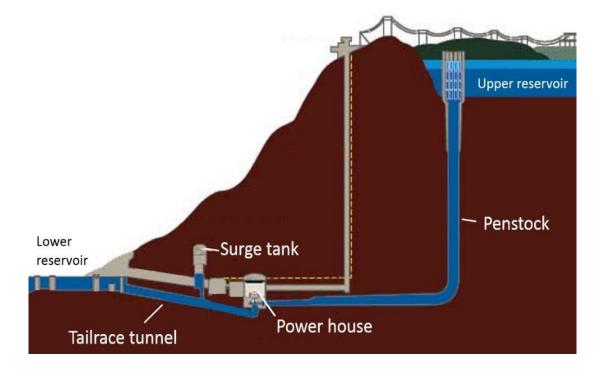
Peak shaving/load leveling

- Help meet loads during peak hours
 - Generating while releasing water from upper reservoir
 - Supplying expensive energy
- Store energy during off-peak hours
 - Pumping water to the upper reservoir
 - Consuming inexpensive energy

Frequency regulation

- Power variation to track short-term load variations
- Helps maintain grid frequency at 60 Hz (50 Hz)

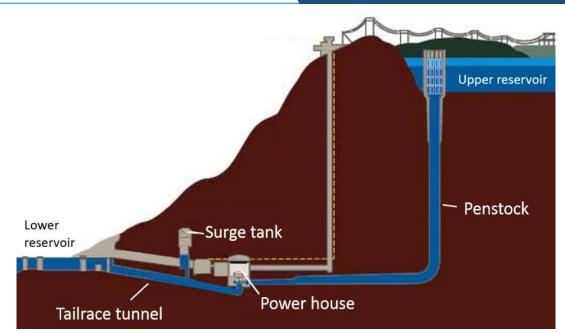
Voltage support


- Reactive power flow control to help maintain desired grid voltage
 - Varying the field excitation voltage of the generator/motor
- □ Even at zero real power not pumping or generating
 - unloaded motor/generator can serve as synchronous condenser
 - Pump/turbine spinning in air

- Upper and lower
 reservoirs separated by
 an elevation difference
- □ Two configurations:
 - **Open-loop**:
 - At least one of the reservoirs connected to a source of natural inflow
 - Natural lake, river, river-fed reservoir, the sea

Closed-loop:

- Neither reservoir has a natural source of inflow
- Initial filling and compensation of leakage and evaporation provided by ground water wells
- Less common than open-loop



PHES COMPONENTS – PENSTOCK

Renewable Energy Resources

Penstock

- Conduit for water flowing between reservoirs and to the pump/generator
- Above-ground pipes or below ground shafts/tunnels
 - 5 -10 m diameter is common
 - One plant may have several penstocks
 - Typically steel- or concrete-lined, though may be unlined
- □ Flow velocity range of 1 5 m/s is common
- $\hfill Tradeoff between cost and efficiency for a given flow rate, <math display="inline">Q\!\!Q$
 - Larger cross-sectional area:
 - Slower flow
 - Lower loss
 - Higher cost

PHES COMPONENTS

Renewable Energy Resources

Upper reservoir

Tailrace tunnel

- Typically, larger
 diameter than penstocks
- □ Lower pressure
- Lower flow rate
- Downward slope from lower reservoir to pump/turbine
 - Inlet head helps prevent cavitation in pumping mode

Lower reservoir Tailrace tunnel

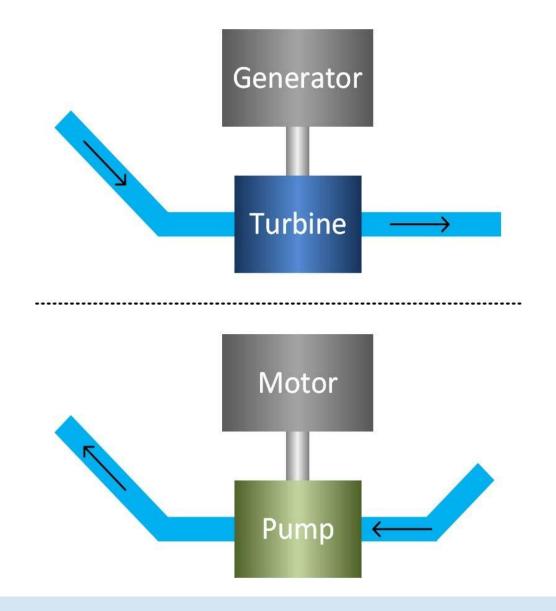
Surge tanks

- Accumulator tanks to absorb high pressure transients during startup and mode changeover
- May be located on penstock or tailrace
- Especially important for longer tunnels
- Hydraulic bypass capacitors

Renewable Energy Resources

Power house

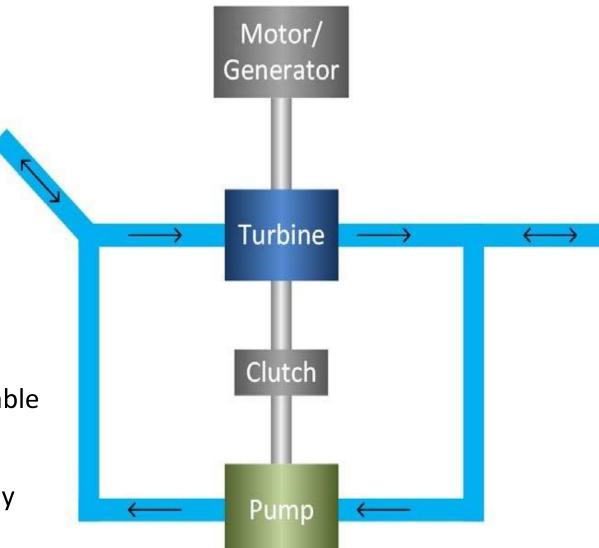
- Contains pump/turbines and motor/generators
- Often underground
- Typically below the level of the lower reservoir to provide required pump inlet head


- Lower reservoir Tailrace tunnel
- □ Three possible configurations
 - Binary set: one pump/turbine and one motor/generator
 - Ternary set: one pump, one turbine, and one motor/generator
 - Quaternary set: separate pump, turbine, motor, and generator

POWER PLANT CONFIGURATIONS – QUATERNARY SET

Quaternary set

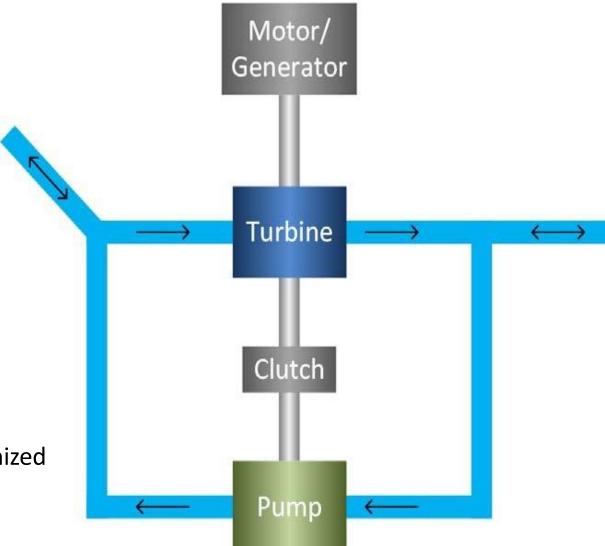
- Pump driven by a motor
- □ Generator driven by a turbine
- Pump and turbine are completely decoupled
- Possibly separate penstocks/tailrace tunnels
- Most common configuration prior to 1920
- High
 equipment/infrastructure
 costs
- High efficiency
 - Pump and turbine designed to optimize individual performance



POWER PLANT CONFIGURATIONS – TERNARY SET

Ternary set

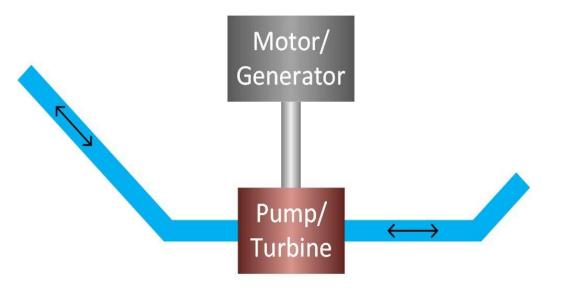
- Pump, turbine, and motor/generator all on a single shaft
 - Pump and turbine rotate in the same direction
- Turbine rigidly coupled to the motor/generator
- Pump coupled to shaft with a clutch
- Popular design 1920 1960s
- Nowadays, used when head exceeds the usable range of a single- stage pump/turbine
 High-head turbines (e.g., Pelton) can be used
- Pump and turbine designs can be individually optimized



POWER PLANT CONFIGURATIONS – TERNARY SET

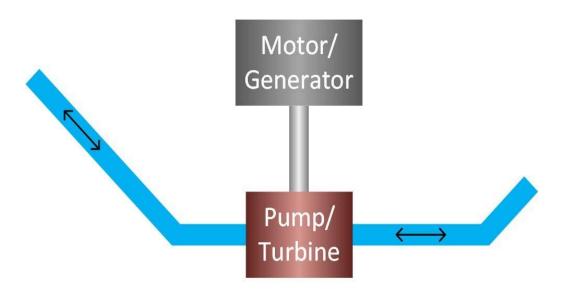
Ternary set

- Generating mode:
 - Turbine spins generator
 - Pump decoupled from the shaft and isolated with valves
- Pumping mode:
 - Motor turns the pump
 - Turbine spins in air, isolated with valves
- Both turbine and pump can operate simultaneously
- Turbine can be used for pump startup
 - Both spin in the same direction
 - Turbine brings pump up to speed and synchronized with grid, then shuts down
 - Changeover time reduced



POWER PLANT CONFIGURATIONS – BINARY SET

Binary set


- Single reversible
 pump/turbine coupled to a
 single motor/generator
- Most popular
 configuration for modern
 PHES
- Lowest cost configuration
 - Less equipment
 - Simplified hydraulic pathways
 - Fewer valves, gates, controls, etc.
- Lower efficiency than for ternary or quaternary sets
 - Pump/turbine runner design is a compromise between pump and turbine performance

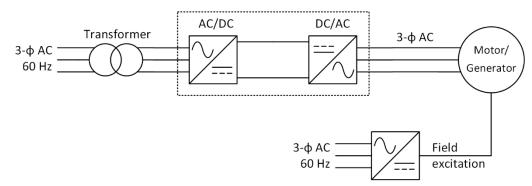
Binary set

- Rotation is in opposite directions for pumping and generating
- Shaft and motor/generator must change directions when changing modes

- Slower changeover than for ternary or quaternary units
- Pump startup:
 - Pump/turbine runner dewatered and spinning in air
 - Motor brings pump up to speed and in synchronism with the grid before pumping of water begins

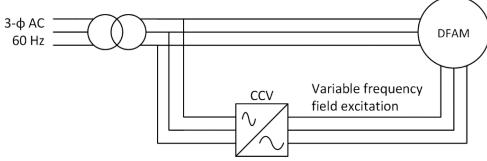
- Hydro turbine design selection based on
 - □ Head
 - Flow rate
- PHES plants are typically sited to have large head
 - Energy density is proportional to head
 - Typically 100s of meters
- Reversible *Francis* pump/turbine
 - Most common turbine for PHES applications
 - Single-stage pump/turbines operate with heads up to 700
 - m
- □ For higher head:
 - Multi-stage pump/turbines
 - Ternary units with *Pelton* turbines

- Pump/turbine shaft connects to a motor/generator unit
 - Above the turbine runner in typical vertical configuration
- □ Motor/generator type depends PHES category:
 - □ Fixed-speed pump/turbine
 - Variable-speed pump/turbine

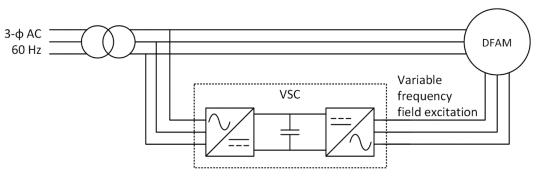

Fixed-speed pump/turbine

- Motor/generator operates at a fixed speed in both pumping and generating modes
- **Synchronous motor/generator**
 - Rotation is synchronous with the AC grid frequency
 - Stator windings connect to three-phase AC at grid frequency
 - Rotor windings fed with DC excitation current via slip rings
 - DC excitation current generated with thyristor AC/DC converters

MOTOR/GENERATOR


- Variable-speed (adjustable-speed) pump/turbine
 - Rotational speed of motor/generator is adjustable
 - Two options:
 - Variable speed using a synchronous motor/generator (singly-fed)
 - Doubly-fed asynchronous machine (DFAM)
- □ Variable-speed operation with synchronous motor/generator:

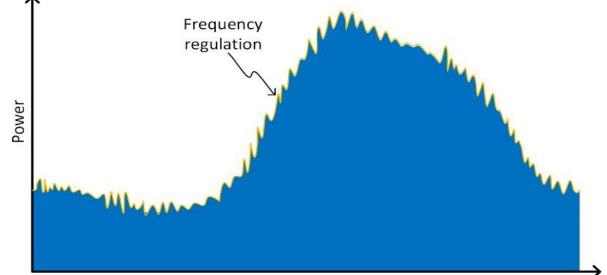
- Motor driven with variable frequency
- Decoupled from grid frequency by back-to-back converters
- Converters must be rated for full motor/generator power
 - Large, expensive


- □ Variable speed using doubly-fed asynchronous machines
 - Field excitation fed with variable, low-frequency AC, not DC as in synchronous machines
 - Static frequency converter generates variable AC
 - Cycloconverter
 - Back-to-back voltage-source converters
 - Typically small speed range (e.g., $\pm 10\%$)
- With *cycloconverter* generating variable-frequency excitation for rotor:

- Converters need not be sized for rated motor/generator power
 - Only supply lower-power excitation to the rotor

DFAM with variable-frequency field excitation generated by back-to-back VSCs:

- The preferred configuration for large (>100 MW) PHES plants nowadays
- □ Advantages of variable-speed plants
 - Pump and turbine speeds can be independently varied to optimize efficiency over range of flow rate and head
 - Pumping power can be varied in addition to generating power

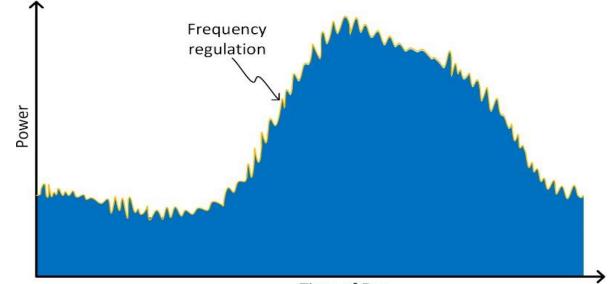


Frequency regulation

- Tracking short-term load variations to maintain grid frequency at 60 Hz (or 50 Hz)
- PHES plants can provide frequency regulation
 - Different for fixed- or variable-speed plants

Fixed-speed plants

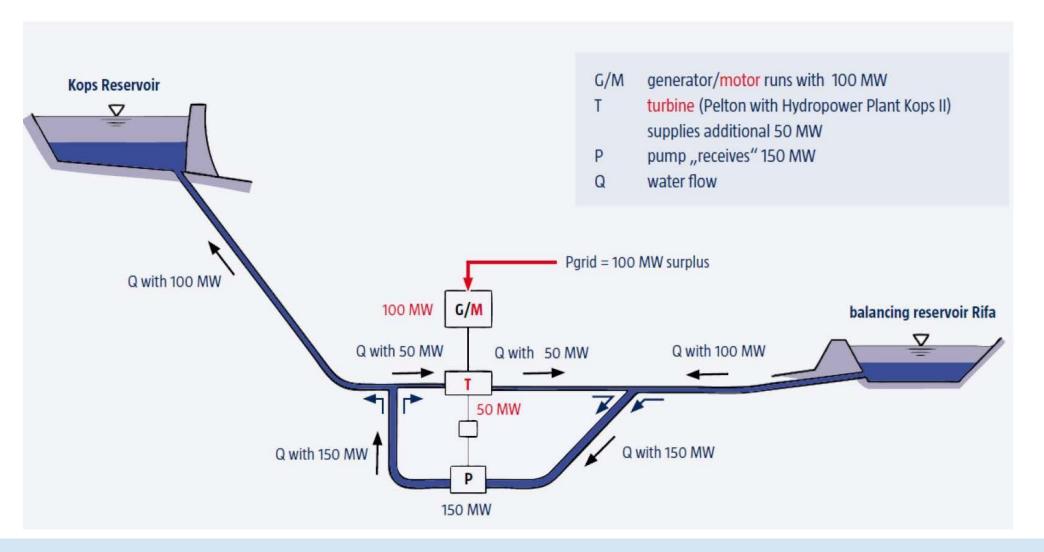
- Generating mode
 - Frequency regulation provided by rapidly varying power output
 - Power varied by using wicket gates to modulate flow rate
 - Same as in conventional hydro plants
- Pumping mode
 - Pump operates at rated power only power input cannot be varied
 - No frequency regulation in pumping mode



Time of Day

Variable-speed plants

- Pump speed can be varied
 over some range, e.g. ±10%
- Pump power is proportional to pump speed *cubed*
 - For ±10% speed variation, power is adjustable over ±30%


Time of Day

- Power variation in pumping mode can track rapid load variations
- Frequency regulation can be provided in both modes of operation

HYDRAULIC SHORT CIRCUIT

□ Kops II PHES plant in Austrian Alps:

1

□ Round-trip efficiency:

$$\eta_{rt} = \frac{E_{out}}{E_{in}} \cdot 100\%$$

where

- *E_{in}* is the electrical energy that flows in from the grid to the plant in pumping mode
- *E*_{out} is the electrical energy that flows from the plant to the grid in generating mode
- □ Typical round-trip efficiency for PHES plants in the range of 70% 80%
- PHES loss mechanisms
 - Transformer
 - Motor/generator
 - Pump/turbine
 - Water conduit

Transformers

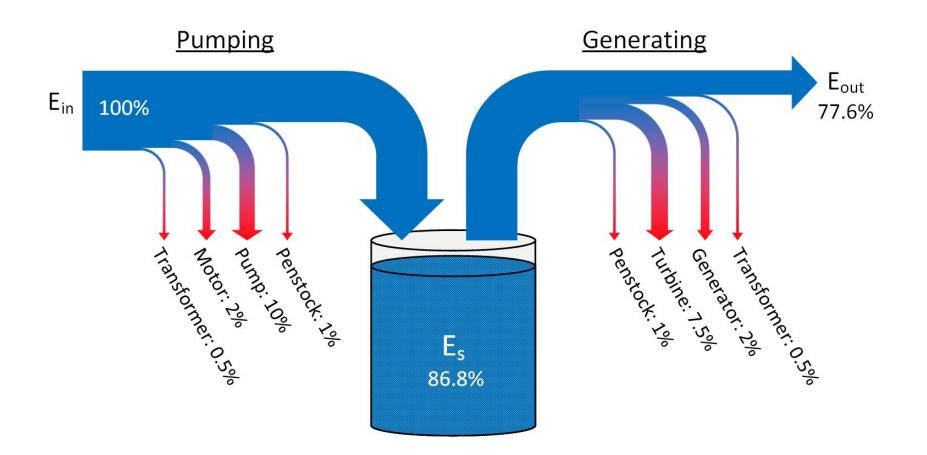
- Pumped hydro plants connect to the AC electrical grid
 - Transformers step voltage between high voltage on the grid side to lower voltage at the motor/generator
- Transformer *loss mechanisms*:
 - Winding resistance
 - Leakage flux
 - Hysteresis and eddy currents in the core
 - Magnetizing current finite core permeability
- Power flows through transformers on the way into the storage plant and again on the way out
- □ Typical loss: ~0.5%

Motor/generator losses

- Electrical resistance
- Mechanical friction
- □ Typical loss: ~2%

Pump/turbine

- □ Single runner in binary sets
 - Typically lower efficiency, particularly for fixed-speed operation design of both compromised
- □ Separate runners in ternary, quaternary sets
 - Higher efficiency
- □ Typical loss: ~7% 10%



Penstock

- Frictional loss of water flowing through the conduit
 - Major losses along penstock
 - Minor losses from bends, penstock inlet, turbine inlet, etc.
- Dependent on
 - Flow velocity
 - Penstock diameter
 - Penstock length
 - Penstock lining steel, concrete, etc.
- High head is desirable, but long penstocks are not
 - Steeper penstocks reduce frictional losses for a given head
 - Typical length-to-head ratio: 4:1 12:1
- □ Typical loss: ~1%

□ Typical losses for PHES:

□ *Efficiency of the pumping operation* is given by

$$\eta_p = \frac{E_s}{E_{in}} \cdot 100\%$$

where

 \Box E_s is the energy stored

• Potential energy of the volume of water, V_u , pumped to the upper reservoir

 $E_s = V_u \rho g h$

 \Box E_{in} is the energy input from the grid during the pumping operation

□ The mechanical energy input to the pump is

$$E_{in,pump} = E_{in} \cdot \eta_{trans} \cdot \eta_{motor}$$

where

 η_{trans} and η_{motor} are the efficiencies of the transformer and motor, respectively

□ The volume of water pumped to the upper reservoir is

$$V_u = \frac{E_{in,pump}}{\rho g h} \cdot \eta_{pump} \cdot \eta_{pipe,p}$$

where

- \Box η_{pump} is the pump efficiency
- $\ \ \eta_{pipe,p}$ is the penstock efficiency in pumping mode
- So, the total pumped volume of water is $V_u = \frac{E_{in}}{\rho gh} \cdot \eta_{trans} \cdot \eta_{motor} \cdot \eta_{pump} \cdot \eta_{pipe,p}$
- □ The *pumping-mode efficiency* is therefore:

$$\eta_p = \frac{E_s}{E_{in}} = \eta_{trans} \cdot \eta_{motor} \cdot \eta_{pump} \cdot \eta_{pipe,p}$$

Efficiency of the generating operation is given by

$$\eta_{gg} = \frac{E_{out}}{E_s} \cdot 100\%$$

 Due to frictional losses in the penstock, the hydraulic energy that reaches the turbine is

$$E_{in,t} = E_s \cdot \eta_{pipe,gg}$$

□ The amount of rotational energy at the turbine output/generator input is

$$E_{in,gg} = E_{in,t} \cdot \eta_t = E_s \cdot \eta_{pipe,gg} \cdot \eta_t$$

 After generator and step-up transformer losses, the energy output to the grid is

$$E_{out} = E_{in,gg} \cdot \eta_{ggen} \cdot \eta_{trans}$$

$$E_{out} = E_s \cdot \eta_{pipe,gg} \cdot \eta_t \cdot \eta_{ggen} \cdot \eta_{trans}$$

Generating mode efficiency is

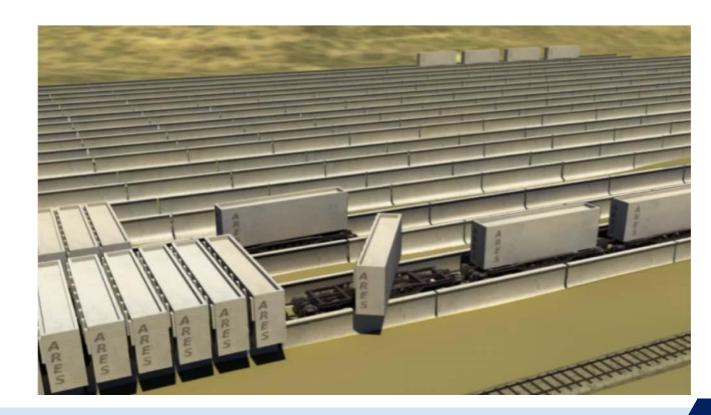
$$\eta_{gg} = \frac{E_{out}}{E_s} = \eta_{pipe,gg} \cdot \eta_t \cdot \eta_{ggen} \cdot \eta_{trans}$$

□ The *overall round-trip efficiency* is therefore

$$\eta_{rt} = \frac{E_{out}}{E_{in}} = \eta_p \cdot \eta_{gg}$$

 $\eta_{rt} = \eta_{trans} \cdot \eta_{motor} \cdot \eta_{pump} \cdot \eta_{pipe,p} \cdot \eta_{pipe,gg} \cdot \eta_t \cdot \eta_{ggen} \cdot \eta_{trans}$

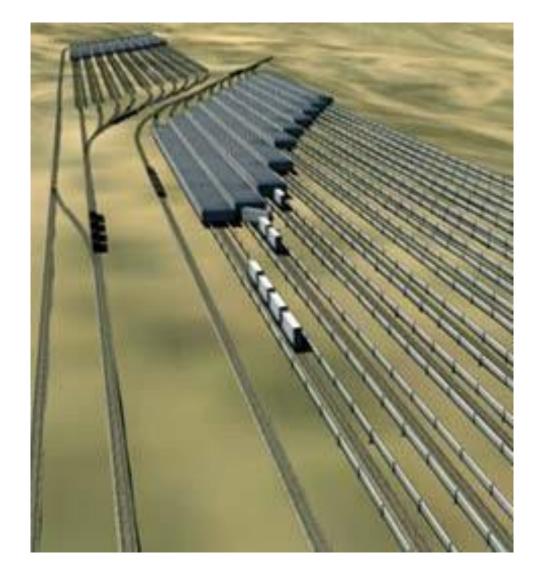
Disadvantages of PHES


- Environmental issues
 - Water usage
 - River/habitat disruption
- Head variation
 - Pressure drops as upper reservoir drains
 - Efficiency may vary throughout charge/discharge cycle
 - Particularly an issue for lower-head plants with steep, narrow upper reservoirs
- Siting options are limited
 - Available water
 - Favorable topography
 - Large land area
- Possible alternative potential energy storage:
 - Rail energy storage

RAIL ENERGY STORAGE

Rail energy storage

- Electric-motor-driven railcars
- Weights are shuttled up and down an incline between upper and lower storage yards
- Power input drives motors to move weights up the track
- Regenerative
 braking on the way
 down supplies
 power to the grid
- Weights are loaded and unloaded at storage yards
 - Large quantities of energy can be stored with few trains



ADVANTAGES OF RAIL ENERGY STORAGE

Renewable Energy Resources

- More siting options than for PHES
 - Open space
 - Elevation change
 - No need for water or topography conducive to reservoirs
- Lower capital cost than PHES
- Easily scalable
- Efficient
 - RT efficiency: 78% 86%
 - Constant efficiency, independent of SoC
- No standby losses
 - No evaporation/leakage

HOW DOES IT WORK?

Renewable Energy Resources

Renewable Energy Resources

Thank you very much for your attention!

Dilshod KODIROV

Professor, Doctor of Science

Head of the Department of Power Supply and Renewable Energy Sources "TIIAME" National Research University

> kodirov.dilshod@gmail.com d.kodirov@tiiame.uz