Bayesian methods for combining climate forecasts

David B. Stephenson, Sergio Pezzulli, Caio Coelho (*) Francisco J. Doblas-Reyes, Magdalena Balmaseda

- 1. Introduction
- 2. Conditioning and Bayes' theorem
- 3. Results

(*): Department of Meteorology, The University of Reading

1. Introduction

Motivation

- Empirical versus dynamical forecasts?
- Why not combine both types of forecast in order to use ALL possible information?
- Ensemble forecasts + probability model ->
 probability forecasts
- Use sample of ensemble forecasts to update historical (prior) probability information (post-forecast assimilation)

El Nino – Southern Oscillation

Big El Nino events in 1982/3 and 1997/8

- La Nina/normal conditions since 1998
- El Nino event predicted for end of 2002

El Niño Conditions

Increased Convection

Recent sea temperature anomalies 16 Sep 2002

NOAA 50KM GLOBAL ANALYSIS: SST — Climatology (C), 9/16/2002 (white regions indicate sea-ice)

0

Forecast production date: 14 Sep 2002

DATA

Sea Surface Temperatures (SST) "at" location Nino 3.4 (5S - 5N , 170W - 120W)

December means of Nino 3.4:

- Reynolds SST: 1950-2001
- ECMWF DEMETER ensemble forecasts: 1987-1999

Some notation ...

- ullet Observed Dec Nino-3.4 $\hspace{0.1cm} heta_{t}$
- ullet Ensemble mean forecast X_t
- Ensemble standard deviation S_X
- Normal (Gaussian) probability forecasts:

$$\hat{\theta}_{t} \sim N(\hat{\mu}_{t}, \hat{\sigma}_{t})$$

$$\hat{\mu}_{t} = \text{forecast mean value}$$

$$\hat{\sigma}_{t} = \text{forecast uncertainty}$$

2. Conditioning and Bayes theorem

Probability density functions (distributions)

Uni-dimensional

Bi-dimensional or Joint distribution of X & Y

Marginal distributions

$$p(x^*) = \int p(x^*, y) dy$$

Conditional distributions

$$p(x | y^*) = p(x, y^*) / p(y^*)$$

Conditional-chain Rule

$$p(y) p(x|y) = p(x,y) = p(x) p(y|x)$$

Bayes Theorem

$$p(x|y) = p(x,y) / p(y)$$

$$\propto p(x,y)$$

$$= p(x) p(y|x)$$

Thomas Bayes 1701-1761

An Essay towards Solving a Problem
In the Doctrine of Chances.
Philosophical Transactions
of the Royal Society, 1763

$$p(W | F) \propto p(W) p(F | W)$$

$$p(W) = N(\mu, \sigma^{2})$$

$$p(F \mid W) = N(\alpha + \beta W, \gamma V)$$

The Likelihood Model

3. Forecast results

Coupled model forecasts

→ Note: many forecasts outside the 95% prediction interval!

Combined forecast

→ Note: more forecasts within the 95% prediction interval!

Mean likelihood model estimates

$$\hat{\alpha} = 6.27 \pm 1.44^{\circ}C$$

$$\hat{\beta} = 0.75 \pm 0.05$$

$$\hat{\gamma} = 7.05 = m/m'$$

- ensemble forecasts too cold on average (alpha>0)
- ensemble forecast anomalies too small (beta<1)
- ensemble forecast spread underestimates forecast uncertainty

Forecast statistics and skill scores

Forecast	MAE (deg C)	Skill Score	Uncertainty
Climatology	1.16	0%	1.19 deg C
Empirical	0.53	55%	0.61
Ensemble	0.57	51%	0.33
Combined	0.31	74%	0.32
Uniform prior	0.37	68%	0.39

Note that the combined forecast has:

- -> A large increase in MAE (and MSE) forecast skill
- → A realistic uncertainty estimate

Conclusions and future directions

- Bayesian combination can substantially improve the skill and uncertainty estimates of ENSO probability forecasts
- Methodology will now be extended to deal with multi-model DEMETER forecasts

 Similar approach could be developed to provide better probability forecasts at medium-range (Issues: non-normality, more forecasts, lagged priors, etc.).

Coupled Model Ensemble Forecast

Ensemble Forecast and Bias Correction

Climatology

Climatology + Ensemble

Coupled-Model Bias-Corrected Ensemble Forecast

Climatology + Ensemble

Coupled-Model Bias-Corrected Ensemble Forecast

Empirical Regression Model + Ensemble

b) Standardised forecast error

