On the use of statistics in complex weather and climate models

Andreas Hense
Meteorological Institute University Bonn

Together with..

- Heiko Paeth (Bonn)
- Seung-Ki Min (Seoul)
- Susanne Theis (Bonn)
- Steffen Weber (Bonn, WetterOnline)
- Monika Rauthe (Bonn, now Rostock)
- Rita Glowienka-Hense

Overview

- Some general remarks concerning complex models of the atmosphere / the climate system and statistics
- Use of statistics in numerical weather prediction
 - ensemble prediction
 - calibration
- Use of statistics in climate change simulations
 - Defining a signal and its uncertainty
 - Detecting a signal in observations

- Randomness in the climate system / atmosphere originates from highdimensionality and nonlinear scale interactions
- Randomness in climate models and NWP models arises additionally
 - from parametrizations
 - from model selection and construction

- Modelling a high dimensional system requires scale selection in space κ and time τ
- Simulation time T < τ a NWP / inital condition problem
- $T \gg \tau$ climate problem
- Urban/Micro climatology T ~ 1 d, τ ~ min or h
- climate simulations embedded into NWP
- detailed precipitation with T ~ 10 d

- The deterministic view
 - e.g. wrong NWP forecast due to model errors
 - e.g. Any modeled climate change in a climate simulation with perturbed greenhouse gase forcing is due to this external forcing.
- More illustrative:
 - ,We predict in two days advance the sunny side of the street"
 - ,We predict in two days advance which tennis
 court in Wimbledon will have rain"

- General formulation of the problem
 - Analysis of the joint pdf of simulations m and observations o
 - -p(m|o) for model validation and selection
 - description of the observation process, mapping of o on m with some unknown parameterset χ
 - maximize p(m, χ | o): calibration, model output statistics MOS

NWP examples

- The generation of model ensemble
 - with precipitation as a (notoriously) difficult variable
 - generation of precipitation is at the end of a long chain of interactions
 - involves scales from the molecular scale up to relevant atmospheric scales 1000 km
 - highly non Gaussian
 - positive definite
 - most probably fat tailed

Generation of NWP ensembles

- Sampling uncertainty in initial conditions
- Sampling uncertainty in boundary conditions
 - physical bc at Earth's surface
 - numerical bc
- Sampling uncertainty in parameter constellations
- Using the limited area weather forecast model of the German Weather Service DWD (7km * 7km, 35 vertical layers, 177 * 177 gridpoints)

Numerical weather prediction is a scenario description of future states of the atmosphere

Sampling of parameter uncertainty: NWP models become stochastic models

$$H = -D\vec{\nabla}T_{lc}$$

$$\frac{\partial T}{\partial t} \sim -\vec{\nabla}(D\vec{\nabla}T_{lc})$$

$$D = \bar{D} + D'$$

$$D' \in NV(0, \sigma_D)$$

Sampling uncertainty in initial conditions

Experimental verification, mean

Calibration of weather forecasts MOS

- Weather forecasts NMC on a 1° * 1° grid
- single station observations every three hours
- not a fully developed Bayesian scheme yet
- but
 - multiple correlation with stepwise regression to select large scale predictands
 - and cross validation

Calibration error statistics mean square error

Calibration error statistics, explained

Application: Daily T_{max} Winter 2001/02

Climate change model simulations

- Predicting changes of climate statistics p(m,t) due to changes in physical boundary conditions
 - changes in p(m,t) relative to p(m,t₀) due to increasing greenhouse gase concentrations e.g.
 CO₂(t) and other anthropogenic forcings
 - changes in p(m,t) relative to $p(m,t_0)$ due to solar variability, volcanic eruptions (natural forcings)
 - distinguish between anthropogenic and natural forcing effects

Climate change model simulation classical view

- Compare modeled anthropogenic changes with observed changes
 - if projection of observed changes onto modeled changes are larger than an unforced background noise level: reject Null hypothesis of unforced climate variability
 - requires the assumption of a "significant" model change
 - which time/space scales and variables allow for these significant changes?

Climate change simulation with GHG forcing

- Sampling uncertainty in initial conditions
 - ensemble simulations (typically 5 or 6 members)
- Sampling inter-model uncertainty
 - two model example: ECHAM3/T21 and HADCM2
 - multimodel example: 15 different models from IPCC data server

Climate change simulations with GHG forcing

- Two model case: precipitation and near surface temperature
- multi model case: Arctic oscillation/North Atlantic oscillation as a driving agent for regional climate variability in Europe
- classical 2-way analysis-of-variance
 - $-x_{i,l,k} = a + b_j + c_l + d_{i,l} + e_{i,l,k}$
 - $-b_i$: common GHG signal as function of time i
 - $-c_l$: bulk inter-model differences
 - $-d_{i,l}$: inter model-differences in GHG forcing

2W-ANOVA of CO2 scenario ensembles: annual means of T2M influence of different models influence of common forcing (CO2) influence of internal variability influence of different forcings

2W-ANOVA of CO2 scenario ensembles: annual sums of PRE

2W-ANOVA of CO2 scenario ensembles: 10-year filtered annual sums of PRE ECHAM3/LSG vs. HADCM2, 1880-2049, globe

Superensemble EOF1 (20.3 %)

NCEP EOF1 (18.4 %)

EOF1 correlation: 0.97

Super. trend (1974-2013): 0.86 hPa/100a NCEP trend (1954-1993): 2.23 hPa/100a

PC1 correlation (trend periods): 0.88

NCEP 10-year lowpass filtered PC1

Climate change model simulations Bayesian view

- Available a set of hypothesis /scenarios h_i
 - unforced variability i=1
 - GHG forced
 - GHG + sulphate aerosol forced
 - solar/volcanic forced
- for each hypothesis / scenario we have a prior $o(h_i)$
- Selection of h_i based on a given observation
 - computation of Bayes factor from likelihood
 - decision based on posterior $p(h_i|o)$

Climate change model simulations Bayesian view

- 2-dimension example: using Northern hemisphere mean temperatures near surface and lower stratosphere
- observations 1979 1999 moving annual means
- model signal: linear change between 1990-2010 in model year 2000
- 5 member ensemble ECHAM3/T21 GHG only
- 3 member ensemble ECHAM3/T21 GHG+S-Ae

Conclusion

- Weather prediction and climate system models simulate parts of the real Earth system
 - starting from these complex models: need to introduce statistical aspects at various levels
 - starting from observations: pure data-based models need a guidance: use physics / chemistry of complex models
- we need quantitative statements about **future changes and their uncertainties** of the real system either the next day, the next decade or century

