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Abstract. In this work, the problem of exploring the stability of vibrations 

of a hysteresis-type elastic dissipative characteristic plate with a liquid 

section dynamic absorber under the influence of random excitations is 

considered. Expressions of mean square deviations of the generalized 

coordinates are presented, and the expression of the spectral density of the 

base acceleration is obtained in the form of a wide band. The integral 

expressions of mean square deviations were calculated, and the conditions 

for the existence of vertical tangents transferred to the graph of the 

function representing the mean square values of displacements of plate 

points were determined. It is shown that these conditions are not fulfilled, 

and the stability condition is determined depending on the structural 

parameters of the system.  
Keywords: plate, nonlinear vibration, dynamic absorber, stability 

condition, hysteresis, resonance. 

1 Introduction 

Nowadays, the problems of reducing harmful vibrations in mechanical systems and 

identifying and eliminating the factors preventing their long-term perfect operation are 

important tasks that require solving. In this regard, mathematical modeling of the motion of 

the elastic vibration protected plate, taking into account the nonlinear deformation, 

exploring its dynamics and stability are considered urgent problems. 

There are several works devoted to nonlinear vibrations of plates of various shapes, 

their stability and vibration damping. Among them: 

The problem of finding and analyzing the solution of the Ito differential equation for 

Weiner random excitations is solved in the article [1]. The condition that the solution of the 

Ito differential equation does not change sharply is defined for non-autonomous system 

parameters. 
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In the article [2], the parametric stability of the motion of systems in real nois 

excitations is studied. The Lyapunov exponent was determined and analyzed numerically. 

The article [3] examines the problem of exponential stability of systems with hysteresis-

type connections under the influence of random excitations. In this case, the Ito differential 

equation was constructed by the stochastic averaging method, and the Lyapunov method 

was used to explore the stability of motion. In order to demonstrate the reliability of the 

obtained results, several problems have been resolved. 

In the article [4], a thin plate is studied as a wall of a building, and its hysteresis-type 

elastic dissipative characteristic is numerically analyzed using the finite element method 

depending on the change in the ratio of plate thickness to height.  

In the study [5], the energy losses in the plate material with elastic dissipative 

characteristics of the hysteresis type, with steel bars attached to all four ends, were 

determined and analyzed based on analytical methods and experiments. 

In the article [6], the nonlinear vibrations of a thin plate with a composite coating under 

the influence of external forces and the stability of stationary motion were studied, in which 

the effectiveness of the damping coefficient of the plate, the frequency and the influence of 

the external force on the stationary motion of the plate and the stability of stationary motion 

were analyzed. Numerical solutions for the amplitude-frequency characteristic were 

obtained, compared with analytical solutions, and numerically analyzed. 

In the study [7], the vibrations of the plate with elastic dissipative characteristics under 

the influence of wide-band random excitations was considered on an experimental basis. 

The analytical expression of the amplitudes was obtained as a function of the system 

parameters and numerically analyzed for the aluminum material. 

In the article [8], the hysteresis-type elastic dissipative characteristic of the composite 

plate was analyzed and experiments were conducted for several types of materials. The 

resonance frequency is expressed analytically. 

The vibrations of a plate with elastic dissipative characteristics were studied in [9] under 

the influence of various random excitations. Root mean square deviation and spectral 

densities were analytically expressed and numerically analyzed. 

In the work [10], the natural frequency and mode shapes of a plate of different shapes 

were studied using finite differences, experiments and R-function methods for different 

boundary conditions. It is shown that the use of the R-function method gives more 

convenience in the determination and analysis of the characteristic frequency and 

characteristic vibration forms. The influence of the geometrical dimensions of the plate on 

the change of the natural frequency was numerically analyzed and the results are given in 

the form of a table.  

The transverse vibrations of a plate passing between two fixed axes rotating rollers were 

studied in [11] using asymptotic methods. The relations between the forces representing the 

influence of the materials on the surface of the rollers and the deformations of the plate are 

expressed in the hysteresis type. The dynamic model of nonlinear forces is derived using 

the Duffing equation. The damping and uniformity coefficients of the rollers were analyzed 

and their optimal values for damping plate vibrations were determined. 

The finite element analysis of energy to solve the problem of plate vibrations is 

presented in the work [12]. It is shown that the energy equations obtained in this analysis, 

averaged with respect to time and coordinate, represent the nature of vibrations. 

The work [13-14] is devoted to determining the limits of failure of plate motion. In this 

case, the equations of motion and boundary conditions are determined using Hamilton's 

principle. Analytical expressions of uncertainty limits were derived from the Hurwitz 

criterion, and the effect of damping coefficients on uncertainty areas was investigated. 

Mathematically modeled transverse vibrations of a hysteresis-type plate with elastic 

dissipative characteristics under the effects of harmonic and random excitations, studied its 
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dynamics, and explored its stability in [15-19]. In this case, the hysteresis-type elastic 

characteristics of the plate material were obtained based on the Pisarenko-Boginich 

hypothesis. Based on the obtained results, numerical calculations were carried out and 

analyzed, conclusions were drawn and recommendations were developed. 

Solving the mathematical stability of the motion of elastic plates protected against 

vibrations in random excitations, taking into account nonlinear deformation, is considered 

one of the urgent problems. 

2 Materials and methods  

The main relationships of the theory of random processes are used when solving problems 

related to the vibrations of mechanical systems under the influence of random excitations 

[15]. Based on them, the mean square deviations of the generalized coordinates represent 

the random vibrations of the considered systems. 

𝜎𝑖𝑘
2 = ∫ |𝐻1(𝜔)|2𝑆𝑊0

(𝜔)𝑑𝜔
∞

−∞

; 

𝜎3∗
2 = ∫ |𝐻2(𝜔)|2𝑆𝑊0

(𝜔)𝑑𝜔
∞

−∞

;                                                 (1) 

𝜎4∗
2 = ∫ |𝐻3(𝜔)|2𝑆𝑊0

(𝜔)𝑑𝜔
∞

−∞

, 

where 𝜎𝑖𝑘 is the mean square value of displacements of plate points; 𝜎3∗ and 𝜎4∗are mean 

square values of the displacement of the outer body of the liquid section dynamic absorber 

and the solid body inside the liquid, respectively; 𝑆𝑊0
(𝜔) is spectral density of base 

acceleration; 𝐻1(𝜔), 𝐻2(𝜔), 𝐻3(𝜔) are system amplitude-frequency characteristics and are 

defined as follows: 

𝐻1(𝜔) = |𝑢𝑖𝑘∗|𝜀𝑝0√
Ψ1

2 + Ψ2
2

Υ1
2 + Υ2

2 ; 𝐻2(𝜔) = |𝑢𝑖𝑘∗|𝜀𝑝0√
Ψ3

2 + Ψ4
2

Υ1
2 + Υ2

2 ;  

𝐻3(𝜔) = |𝑢𝑖𝑘∗|𝜀𝑝0√
Ψ5

2 + Ψ6
2

Υ1
2 + Υ2

2 ,                                                     (2) 

where Ψ1(𝜔) = 𝑚𝑖𝑘(𝑐1 − 𝑀1𝜔2)(2𝑐2 − 𝑀4𝜔2) − 𝑚𝑖𝑘𝜔2(𝑏𝐹𝑏𝑆 + 𝑀2𝑀3𝜔2); 

Ψ2(𝜔) = ((𝑐1 − 𝑀1𝜔2)𝑏𝑆 + (2𝑐2 − 𝑀4𝜔2)𝑏𝐹)𝑚𝑖𝑘𝜔; 

Ψ3(𝜔) =(2𝑐2𝑀1 − Δ𝜔2)𝑚𝑖𝑘𝑢𝑖𝑘1𝜔2; Ψ4(𝜔) = 𝑏𝑆𝑀1𝑚𝑖𝑘𝑢𝑖𝑘1𝜔3; 

Ψ5(𝜔) = 𝑐1∗𝑀3𝑚𝑖𝑘𝑢𝑖𝑘1𝜔2; Ψ6(𝜔) = 𝑏𝐹𝑀3𝑚𝑖𝑘𝑢𝑖𝑘1𝜔3; 

Υ1(𝜔) = −Δ𝑚𝑖𝑘𝜔6 + ((2𝑐2𝑀1 + 𝑐1𝑀4)𝑚𝑖𝑘 + (𝑚𝑖𝑘 + 𝑢𝑖𝑘1
2 𝑀1)𝑏𝐹𝑏𝑆 + Δ(𝑐1𝑖𝑘 +

𝑐1𝑢𝑖𝑘1
2 ))𝜔4 + (𝑏𝑆𝑀1 + 𝑏𝐹𝑀4)𝑐2𝑖𝑘𝜔3 − (2𝑐1𝑐2(𝑚𝑖𝑘 + 𝑢𝑖𝑘1

2 𝑀1) + (2𝑐2𝑀1 + 𝑐1𝑀4 +

𝑏𝐹𝑏𝑆)𝑐1𝑖𝑘)𝜔2 − (𝑏𝑆𝑐1 + 2𝑐2𝑏𝐹)𝑐2𝑖𝑘𝜔 + 2𝑐1𝑐2𝑐1𝑖𝑘;  

Υ2(𝜔) = (Δ𝑏𝐹𝑢𝑖𝑘1
2 + (𝑏𝑆𝑀1 + 𝑏𝐹𝑀4)𝑚𝑖𝑘)𝜔5 + Δ𝑐2𝑖𝑘𝜔4 − ((𝑏𝑆𝑀1 + 𝑏𝐹𝑀4)𝑐1𝑖𝑘 +

(𝑚𝑖𝑘 + 𝑢𝑖𝑘1
2 𝑀1)(𝑏𝑆𝑐1 + 2𝑐2𝑏𝐹))𝜔3 − (2𝑐2𝑀1 + 𝑐1𝑀4 + 𝑏𝐹𝑏𝑆)𝑐2𝑖𝑘𝜔2 + (𝑏𝑆𝑐1 +

2𝑐2𝑏𝐹)𝑐1𝑖𝑘𝜔 + 2𝑐1𝑐2𝑐2𝑖𝑘; 𝑀1 = 𝑚13∗ + 𝑚2;  𝑀2 = 𝑚2 + 𝑚𝑣;  𝑀3 = 𝑚2 − 𝑚𝑣;  𝑀4 =
𝑚2 + 𝑚4; 

∆= 𝑀1𝑀4 − 𝑀2𝑀3; 𝑚1 is the mass of the outer body of the dynamic absorber surrounding 

the liquid; 𝑚2 is the mass of the solid body of the dynamic absorber; 𝑚3 is mass of liquid; 

𝑚4 is mass of the liquid attached to the object with mass 𝑚2; 𝑏𝐹 is damping coefficient; 𝑐1 
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and 𝑐2 are stiffnesses; 𝑚13∗ = 𝑚1 + 𝑚3; 𝑚𝑣 is the mass of liquid displaced by a solid body 

with mass 𝑚2; 𝑏𝑆 is the viscosity coefficient of the liquid; 𝑚𝑖𝑘 and с𝑖𝑘 are modal masses 

and stiffnesses, expressed as follows (𝑖, 𝑘 = 1 … 𝑛): 

𝑚𝑖𝑘 = ∬ 𝜌ℎ𝑢𝑖𝑘
2 𝑑𝑥𝑑𝑦

𝑎 𝑏

0 0

; 𝑐𝑖𝑘 = [(1 + 𝐷0(−𝜂1 + 𝐽𝜂2)) ∬ 𝜌ℎ𝑢𝑖𝑘
2 𝑑𝑥𝑑𝑦

𝑎 𝑏

0 0

] + 

+
3𝐷

𝜔𝑖𝑘
2

(−𝜂1 + 𝐽𝜂2) ∑ 𝐷𝑅𝜎𝑖𝑘𝑎
𝑅

𝑠1

𝑅=1

ℎ𝑅

2𝑅(𝑅 + 3)
∬ 𝑢𝑖𝑘

𝑎 𝑏

0 0

[
𝜕2

𝜕𝑥2
((

𝜕2𝑢𝑖𝑘

𝜕𝑥2
+ 

+𝜇𝑛

𝜕2𝑢𝑖𝑘

𝜕𝑦2
) |

𝜕2𝑢𝑖𝑘

𝜕𝑥2
+ 𝜇𝑛

𝜕2𝑢𝑖𝑘

𝜕𝑦2
|

𝑅

) +
𝜕2

𝜕𝑦2
((

𝜕2𝑢𝑖𝑘

𝜕𝑦2
+ 𝜇𝑛

𝜕2𝑢𝑖𝑘

𝜕𝑥2
) × 

× |
𝜕2𝑢𝑖𝑘

𝜕𝑦2
+ 𝜇𝑛

𝜕2𝑢𝑖𝑘

𝜕𝑥2
|

𝑅

)]𝑑𝑥𝑑𝑦 +
6𝐷

𝜔𝑖𝑘
2 (1 − 𝜇𝑛)(𝜈1 − 𝐽𝜈2) ∑ 𝐾𝑁𝜎𝑖𝑘𝑎

𝑁

𝑠2

𝑁=1

× 

×
ℎ𝑁

2𝑁(𝑁 + 3)
∬ 𝑢𝑖𝑘

𝑎 𝑏

0 0

𝜕2

𝜕𝑥𝜕𝑦
((

𝜕2𝑢𝑖𝑘

𝜕𝑥𝜕𝑦
) |

𝜕2𝑢𝑖𝑘

𝜕𝑥𝜕𝑦
|

𝑁

) 𝑑𝑥𝑑𝑦 +
2𝐷

𝜔𝑖𝑘
2

(1 − 𝜇𝑛) × 

× (𝜈1 − 𝐽𝜈2)𝐾0 ∬ 𝑢𝑖𝑘

𝑎 𝑏

0 0

𝜕4𝑢𝑖𝑘

𝜕𝑥2𝜕𝑦2
𝑑𝑥𝑑𝑦]𝜔𝑖𝑘

2 ; 

𝑎, 𝑏 and h are plate sides and thickness, respectively; 𝜌 is the material density of the plate; 

𝑢𝑖𝑘 = 𝑢𝑖𝑘(𝑥, 𝑦) are mode shapes of plate; 𝐷0, 𝐷1, … , 𝐷𝑆1
, 𝐾0, 𝐾1, … , 𝐾𝑆2

 are experimentally 

determined parameters of plate material [20]; 𝐷 =
𝐸ℎ3

12(1−𝜇𝑛
2 )

 are cylindrical stiffness; 𝐸 is 

Young's module;  𝜇𝑛 is Poisson's coefficient; 𝜎𝑖𝑘𝑎 are amplitude values of plate vibrations; 

𝜔𝑖𝑘 are natural frequencies of the plate; 𝜂1, 𝜂22, 𝜈1, 𝜈22 are statistical linearization 

coefficients [15]; 𝜂22𝑠𝑖𝑔𝑛(𝜔), 𝜈2 = 𝜈22𝑠𝑖𝑔𝑛(𝜔); 𝜔 is vibration frequency; 𝐽2 = −1; 

𝑢𝑖𝑘0 = 𝑢𝑖𝑘 (
𝑥

2
, 0) , 𝑢𝑖𝑘𝑎 = 𝑢𝑖𝑘 (

𝑥

2
, 𝑏) and 𝑢𝑖𝑘1 = 𝑢𝑖𝑘(𝑥1, 𝑦1) are values of the mode shapes 

at the points where the forces are applied and at the point where the liquid joint dynamic 

damper is installed; 𝜀𝑝0 is the amplitude value of the base acceleration; 𝑢𝑖𝑘∗ = 𝑢𝑖𝑘0 + 𝑢𝑖𝑘1. 

In order to analyze the stability of the system under consideration, the spectral density 

of the base acceleration in the expressions of mean square deviations (1) is obtained as 

follows [15]: 

𝑆𝑊0
(𝜔) =

𝐷𝑊0
𝜘𝜐3

𝜋(𝜐2 − 𝜔2 + 𝐽𝜘𝜐𝜔)(𝜐2 − 𝜔2 − 𝐽𝜘𝜐𝜔)
,                                    (3) 

where 𝐷𝑊0
 is the dispersion of base acceleration; 𝜘 is a parameter characterizing the 

spectrum width of vibrations; 𝜐 is a dominant frequency of vibration. 

After putting the expression of the spectral density of the base acceleration (3) into the 

system of equations (1). 

𝜎𝑖𝑘
2 =

𝐷𝑊0
𝜘𝜐3(𝑢𝑖𝑘∗𝜀𝑝0)2

𝜋
∫

Ψ1
2 + Ψ2

2

(𝜐2 − 𝜔2 + 𝐽𝜘𝜐𝜔)(𝜐2 − 𝜔2 − 𝐽𝜘𝜐𝜔)(Υ1
2 + Υ2

2)
𝑑𝜔

∞

−∞

;      (4)  

𝜎3∗
2 =

𝐷𝑊0
𝜘𝜐3(𝑢𝑖𝑘∗𝜀𝑝0)2

𝜋
∫

Ψ3
2 + Ψ4

2

(𝜐2 − 𝜔2 + 𝐽𝜘𝜐𝜔)(𝜐2 − 𝜔2 − 𝐽𝜘𝜐𝜔)(Υ1
2 + Υ2

2)
𝑑𝜔

∞

−∞

;      (5)  

𝜎4∗
2 =

𝐷𝑊0
𝜘𝜐3(𝑢𝑖𝑘∗𝜀𝑝0)2

𝜋
∫

Ψ5
2 + Ψ6

2

(𝜐2 − 𝜔2 + 𝐽𝜘𝜐𝜔)(𝜐2 − 𝜔2 − 𝐽𝜘𝜐𝜔)(Υ1
2 + Υ2

2)
𝑑𝜔

∞

−∞

.      (6)  
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In order to find the values of integrals in expressions (4) - (6) using the calculation 

method given in [21]. Calculations are stated for expression (4). To do this, it is necessary 

to transform this integral expression into the following form: 

𝐼1 = ∫
𝑃(𝜔)

ℤ(𝐽𝜔) ℤ(−𝐽𝜔)
𝑑𝜔

∞

−∞

,                                                          (7)  

where   𝑃(𝜔) = с𝑛−1
∗ 𝜔2𝑛−2 + с𝑛−2

∗ 𝜔2𝑛−4 + ⋯ + с0
∗ ; ℤ(𝐽𝜔) = 𝑑𝑛

∗ (𝐽𝜔)𝑛 + 𝑑𝑛−1
∗ (𝐽𝜔)𝑛−1 +

⋯ + 𝑑0
∗ . 

 In order to explore the stability of the transverse vibrations of the vibration protected 

plate under influence  random excitations, the integrals will be made in the expressions (4) - 

(6) to form (7) and determine the mean square deviations.  

3 Results and discussion 

In order to explore the stability of the transverse vibrations of the vibration protected plate 

in random excitations, first the integral will be made in the expression (4) into the form (7). 

For this, the expression Υ1
2(𝜔) + Υ2

2(𝜔) writes in the form 

Υ1
2(𝐽𝜔) + Υ2

2(𝐽𝜔) = (Υ1(𝐽𝜔) + 𝐽Υ2(𝐽𝜔))(Υ1(𝐽𝜔) − 𝐽Υ2(𝐽𝜔))                            (8)  

The expressions will be analyzed Υ1(𝐽𝜔) + 𝐽Υ2(𝐽𝜔) and Υ1(𝐽𝜔) − 𝐽Υ2(𝐽𝜔). 

Υ1(𝐽𝜔) = 𝜏6(𝐽𝜔)6 + 𝜏5(𝐽𝜔)5 + 𝜏4(𝐽𝜔)4 + 𝐽𝜏3(𝐽𝜔)3 + 𝜏2(𝐽𝜔)2 + 𝐽𝜏1(𝐽𝜔) + 𝜏0; 
(9) 

Υ2(𝐽𝜔) = 𝐽𝜙5(𝐽𝜔)5 + 𝜙4(𝐽𝜔)4 + 𝐽𝜙3(𝐽𝜔)3 + 𝜙2(𝐽𝜔)2 + 𝐽𝜙1(𝐽𝜔) + 𝜙0, 

where 𝜏0 = 2𝑐1𝑐2𝑐1𝑖𝑘; 𝜏1 = (𝑏𝑆𝑐1 + 2𝑐2𝑏𝐹)𝑐2𝑖𝑘;  

𝜏2 = 2𝑐1𝑐2(𝑚𝑖𝑘 + 𝑢𝑖𝑘1
2 𝑀1) + (2𝑐2𝑀1 + 𝑐1𝑀4 + 𝑏𝐹𝑏𝑆)𝑐1𝑖𝑘; 𝜏3 = (𝑏𝑆𝑀1 + 𝑏𝐹𝑀4)𝑐2𝑖𝑘; 

𝜏4 = (2𝑐2𝑀1 + 𝑐1𝑀4)𝑚𝑖𝑘 + (𝑚𝑖𝑘 + 𝑢𝑖𝑘1
2 𝑀1)𝑏𝐹𝑏𝑆 + Δ(𝑐1𝑖𝑘 + 𝑐1𝑢𝑖𝑘1

2 );  

𝜏5 = 0; 𝜏6 = Δ𝑚𝑖𝑘; 𝜙0 = 2𝑐1𝑐2𝜃2𝑖𝑘;  𝜙1 = −(𝑏𝑆𝑐1 + 2𝑐2𝑏𝐹)𝑐1𝑖𝑘; 

𝜙2 = (2𝑐2𝑀1 + 𝑐1𝑀4 + 𝑏𝐹𝑏𝑆)𝑐2𝑖𝑘; 

𝜙3 = −((𝑏𝑆𝑀1 + 𝑏𝐹𝑀4)𝑐1𝑖𝑘 + (𝑚𝑖𝑘 + 𝑢𝑖𝑘1
2 𝑀1)(𝑏𝑆𝑐1 + 2𝑐2𝑏𝐹)); 

𝜙4 = Δ𝑐2𝑖𝑘; 𝜙5 = −Δ𝑏𝐹𝑢𝑖𝑘1
2 − (𝑏𝑆𝑀1 + 𝑏𝐹𝑀4)𝑚𝑖𝑘;  

According to the method of calculating the integral mentioned above, expressions (9) 

should have real coefficients, but they contain complex coefficients. In order to eliminate 

these complex coefficients, expressions (9)  will be put into expression (8) and, replacing it 

in the integral (4), multiply the numerator and denominator of the fraction by the following 

multiplier: 

𝑃1(𝐽𝜔) = (Υ1𝑎(𝐽𝜔) − 𝐽Υ2𝑎(𝐽𝜔))(Υ1𝑏(𝐽𝜔) − 𝐽Υ2𝑏(𝐽𝜔)),                               (10) 

where 

Υ1𝑎(𝐽𝜔) = 𝜏6(𝐽𝜔)6 + 𝜙5(𝐽𝜔)5 + 𝜏4(𝐽𝜔)4 + 𝜙3(𝐽𝜔)3 + 𝜏2(𝐽𝜔)2 + 𝜙1(𝐽𝜔) + 𝜏0; 

Υ2𝑎(𝐽𝜔) = −𝜙4(𝐽𝜔)4 + 𝜏3(𝐽𝜔)3 − 𝜙2(𝐽𝜔)2 + 𝜏1(𝐽𝜔) − 𝜙0; 

Υ1𝑏(𝐽𝜔) = 𝜏6(𝐽𝜔)6 − 𝜙5(𝐽𝜔)5 + 𝜏4(𝐽𝜔)4 − 𝜙3(𝐽𝜔)3 + 𝜏2(𝐽𝜔)2 − 𝜙1(𝐽𝜔) + 𝜏0; 

Υ2𝑏(𝐽𝜔) = 𝜙4(𝐽𝜔)4 + 𝜏3(𝐽𝜔)3 + 𝜙2(𝐽𝜔)2 + 𝜏1(𝐽𝜔) + 𝜙0. 

 Then, the integral expression (7) will be 

𝑃(𝜔) = (Ψ1
2 + Ψ2

2)𝑅𝑒(𝑃1(𝐽𝜔)); 

ℤ(𝐽𝜔) = (Υ1(𝐽𝜔) + 𝐽Υ2(𝐽𝜔))(Υ1𝑎(𝐽𝜔) − 𝐽Υ2𝑎(𝐽𝜔)))(𝜐2 + (𝐽𝜔)2 + 𝜘𝜐(𝐽𝜔)); 

ℤ(−𝐽𝜔) = (Υ1(𝐽𝜔) − 𝐽Υ2(𝐽𝜔))(Υ1𝑏(𝐽𝜔) − 𝐽Υ2𝑏(𝐽𝜔)))(𝜐2 + (𝐽𝜔)2 − 𝜘𝜐(𝐽𝜔)), 
After simplifications, the result is: 

𝑛 = 14; 𝑃(𝜔) = 𝑚𝑖𝑘
2 (с13

∗ 𝜔26 + с12
∗ 𝜔24 + ⋯ + с0

∗ ); 
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(11) 

ℤ(𝐽𝜔) = 𝑑14
∗ (𝐽𝜔)14 + 𝑑13

∗ (𝐽𝜔)13 + ⋯ + 𝑑0
∗ , 

where с0
∗ = ∆1∆𝑓; с1

∗ = ∆1∆𝑎 + ∆4∆𝑓; с2
∗ = ∆1∆𝑏 + ∆4∆𝑎 + ∆2∆𝑓; 

с3
∗ = ∆1∆𝑐 + ∆4∆𝑏 + ∆2∆𝑎 + ∆3∆𝑓; с4

∗ = ∆1∆𝑑 + ∆4∆𝑐 + ∆2∆𝑏 + ∆3∆𝑎 + ∆2∆𝑓; 

с5
∗ = ∆1∆𝑒 + ∆4∆𝑑 + ∆2∆𝑐 + ∆3∆𝑏 + ∆2∆𝑎; с6

∗ = ∆1𝜏6
2 + ∆4∆𝑒 + ∆2∆𝑑 + ∆3∆𝑐 + ∆2∆𝑏; 

с7
∗ = ∆4𝜏6

2 + ∆2∆𝑒 + ∆3∆𝑑 + ∆2∆𝑐; с8
∗ = ∆2𝜏6

2 + ∆3∆𝑒 + ∆2∆𝑑; 

с9
∗ = ∆3𝜏6

2 + ∆2∆𝑒;  с10
∗ = ∆2𝜏6

2; с11
∗ = с12

∗ = с13
∗ = 0; ∆1= (2𝑐1∗𝑐2∗)2; 

∆2= 4𝑐1𝑐2∆ + (2𝑐2𝑀1 + 𝑐1𝑀4 + 𝑏𝐹𝑏𝑆)2 − 2(𝑏𝑆𝑐1 + 2𝑐2𝑏𝐹)(𝑏𝑆𝑀1 + 𝑏𝐹𝑀4); 

∆3= −2∆(2𝑐2𝑀1 + 𝑐1𝑀4 + 𝑏𝐹𝑏𝑆) + (𝑏𝑆𝑀1 + 𝑏𝐹𝑀4)2; 

∆4= −4𝑐1𝑐2(2𝑐2𝑀1 + 𝑐1𝑀4 + 𝑏𝐹𝑏𝑆) + (𝑏𝑆𝑐1 + 2𝑐2𝑏𝐹)2; ∆𝑓= 𝜏0
2 + 𝜙0

2; 

∆𝑎= −𝜏1
2 + 2𝜏0𝜏2 − 𝜙1

2 + 2𝜙0𝜙2; ∆𝑏= 𝜏2
2 + 2𝜏0𝜏4 − 2𝜏1𝜏3 + 𝜙2

2 + 2𝜙0𝜙4 − 2𝜙1𝜙3; 

∆𝑐= −𝜏3
2 + 2𝜏0𝜏6 + 2𝜏2𝜏4 − 𝜙3

2 − 2𝜙1𝜙5 + 2𝜙2𝜙4; ∆𝑑= 𝜏4
2 + 2𝜏2𝜏6 + 𝜙4

2 − 2𝜙3𝜙5; 

∆𝑒= 2𝜏4𝜏6 − 𝜙5
2; 𝑑0

∗ = 𝜐2∆𝑓; 𝑑1
∗ = 𝜘𝜐∆𝑓 − 2𝜙𝑎𝜐2; 𝑑2

∗ = ∆𝑓 − 2𝜘𝜐𝜙𝑎 + 𝜙𝑏𝜐2; 

𝑑3
∗ = −2𝜙𝑎 + 𝜘𝜐𝜙𝑏 + 2𝜙𝑐𝜐2; 𝑑4

∗ = 𝜙𝑏 + 2𝜘𝜐𝜙𝑐 + 𝜙𝑑𝜐2; 𝑑5
∗ = 2𝜙𝑐 + 𝜘𝜐𝜙𝑑 − 2𝜙𝑒𝜐2; 

𝑑6
∗ = 𝜙𝑑 − 2𝜘𝜐𝜙𝑒 + 𝜙𝑓𝜐2; 𝑑7

∗ = −2𝜙𝑒 + 𝜘𝜐𝜙𝑓 + 2𝜙𝑔𝜐2; 𝑑8
∗ = 𝜙𝑓 + 2𝜘𝜐𝜙𝑔 + 𝜙ℎ𝜐2; 

𝑑9
∗ = 2𝜙𝑔 + 𝜘𝜐𝜙ℎ − 2(𝜏4𝜙5 + 𝜏6𝜙3)𝜐2; 

𝑑10
∗ = 𝜙ℎ − 2𝜘𝜐(𝜏4𝜙5 + 𝜏6𝜙3) + (𝜙5

2 + 2𝜏4𝜏6)𝜐2; 

𝑑11
∗ = −2(𝜏4𝜙5 + 𝜏6𝜙3) + 𝜘𝜐(𝜙5

2 + 2𝜏4𝜏6) − 2𝜏6𝜙5𝜐2; 

𝑑12
∗ = 𝜐2𝜏6

2 − 2𝜘𝜐𝜏6𝜙5 + 𝜙5
2 + 2𝜏4𝜏6; 𝑑13

∗ = 𝜘𝜐𝜏6
2 − 2𝜏6𝜙5; 

𝑑14
∗ = 𝜏6

2; 𝜙𝑎 = 𝜏0𝜙1 − 𝜏1𝜙0; 𝜙𝑏 = 𝜏1
2 + 2𝜏0𝜏2 + 𝜙1

2 + 2𝜙0𝜙2; 

𝜙𝑐 = 𝜏1𝜙2 − 𝜏0𝜙3 + 𝜏3𝜙0 − 𝜏2𝜙1; 𝜙𝑑 = 𝜏2
2 + 2𝜏0𝜏4 + 2𝜏1𝜏3 + 𝜙2

2 + 2𝜙0𝜙4 + 2𝜙1𝜙3; 

 𝜙𝑒 = 𝜏0𝜙5 − 𝜏1𝜙4 + 𝜏2𝜙3 − 𝜏3𝜙2 + 𝜏4𝜙1; 

𝜙𝑓 = 𝜏3
2 + 2𝜏0𝜏6 + 2𝜏2𝜏4 + 𝜙3

2 + 2𝜙1𝜙5 + 2𝜙2𝜙4; 

 𝜙𝑔 = 𝜏3𝜙4 − 𝜏2𝜙5 − 𝜏4𝜙3 − 𝜏6𝜙1; 𝜙ℎ = 𝜏4
2 + 2𝜏2𝜏6 + 𝜙4

2 + 2𝜙3𝜙5.  

 If the value of the integral (7) is calculated based on the determined coefficients of the 

expressions (11) according to the method presented in [21], it will be as follows: 

𝐼2∗ =
𝜋𝑚𝑖𝑘

2

𝑑14
∗

|

|

с13
∗ с12

∗ с11
∗

−𝑑14
∗ 𝑑12

∗ −𝑑10
∗

0 −𝑑13
∗ 𝑑11

∗
     

… с1
∗ с0

∗

𝑑8
∗ … 0

−𝑑9
∗ … 0

     0      𝑑14
∗  −𝑑12

∗

0 …
0 …

     

𝑑10
∗ … 0

… 0
… −𝑑2

∗ 𝑑0
∗

|

|

|

|

𝑑13
∗ −𝑑11

∗ 𝑑9
∗

−𝑑14
∗ 𝑑12

∗ −𝑑10
∗

0 −𝑑13
∗ 𝑑11

∗
     

… 0
𝑑8

∗ … 0

−𝑑9
∗ … 0

     0      𝑑14
∗  −𝑑12

∗

0 …
0 …

     

𝑑10
∗ … 0

… 0
… −𝑑2

∗ 𝑑0
∗

|

|

.                              (12) 

So, based on the value of the integral (12), the mean square value of the vibrations of 

the hysteresis-type plate with elastic dissipative characteristics under the influence of 

random excitations is as follows: 

𝜎𝑖𝑘
2 =

𝐷𝑊0
𝜘𝜐3(𝑢𝑖𝑘∗𝜀𝑝0)2

𝜋
𝐼2∗.                                             (13) 
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The determined mean square values (13) allow to analyze the dynamics and stability of 

transverse vibrations of a hysteresis-type plate with elastic dissipative characteristics under 

the influence of random excitations, depending on the system parameters. For this purpose, 

using the expression of mean square values (13) and the method of vertical tangents, the 

stability of the transverse vibrations of the hysteresis-type plate with elastic dissipative 

characteristics under the influence of random excitations will be explored. 

For this, the condition of existence of vertical tangents transferred to the graph of the 

function 𝜎𝑖𝑘  are analyzed. In this case, the condition for the existence of vertical tangents 

transferred to the graph of the function 𝜎𝑖𝑘 is as follows: 

2𝜎𝑖𝑘 −
𝐷𝑊0

𝜘𝜐3(𝑢𝑖𝑘∗𝜀𝑝0)2

𝜋

𝜕𝐼2∗

𝜕𝜎𝑖𝑘

= 0.                                      (14) 

Equation (14) has a solution when the condition 
𝜕𝐼2∗

𝜕𝜎𝑖𝑘

≥ 0 is fulfilled. Values of the 

dominant frequency 𝜐 that satisfy the equation (14) represent the border of stability of the 

considered system. 

𝜕𝐼2∗

𝜕𝜎𝑖𝑘

=
2𝜋𝜎𝑖𝑘

𝐷𝑊0
𝜘𝜐3(𝑢𝑖𝑘∗𝜀𝑝0)2

.                                            (15) 

By the nature of the vertical tangents method, if there are no vertical tangents 

transferred to the graph in question, this motion takes stability. Therefore, it is enough that 
𝜕𝐼2∗

𝜕𝜎𝑖𝑘

 is negative definite so that the condition of existence of vertical tangents (14) is not 

fulfilled. 
𝜕𝐼2∗

𝜕𝜎𝑖𝑘

< 0.                                                                (16) 

The obtained condition (16) is considered as the stability condition of transverse 

vibrations of the hysteresis-type plate with elastic dissipative characteristics under the 

influence of random excitations, and it allows to determine different values of system 

parameters corresponding to stable and instable vibrations.  

4 Conclusion 

1. The stability of nonlinear transverse vibrations of a hysteresis-type elastic dissipative 

characteristic plate combined with a liquid section dynamic absorber under the influence of 

random excitations was investigated. 

2. Based on the method of vertical tangents, the stability condition was determined, and the 

condition for its solution was determined. 

3. The stability of the transverse vibrations of the hysteresis-type plate with elastic 

dissipative characteristics under the influence of random excitations can be analyzed 

depending on the system parameters according to determined stability condition. 
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