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Abstract. A model of a self-balancing deviceis proposed in the article;it is 

installed with an eccentricity relative to the axis of symmetry of the rotor, 

and the ball races have a certain horizontal axis of rotation, that is, the 

balancing masses have an additional degree of Based on differential 

equations of motion, the issue of the existence of stationary motions was 

investigated for various combinations of the installation of a balancing 

system, with regard to certain eccentricity and angular error, and the rotation 

of the ball races around the horizontal axis. The numerical solution of the 

differential equations of motion of the rotor with two balancing balls is 

obtained and the analysis of the obtained results is conducted. Keywords: 

self-balancing device, rotor, multi-row races, eccentricity, angular error, 

imbalance. 

1 Introduction 

There is a problem of reducing unwanted vibrations of rotors mounted on an elastic shaft, 

which occur due to system imbalance in the case of supercritical angular velocities. The 

article is devoted to the study of the dynamics of the rotor at supercritical angular velocities, 

with regard to the self-balancing device (SBD). Solving the problem of dynamic balancing 

of an unbalanced rotor using a balancing device is currently a rather difficult problem since 

the differential equations of motion are nonlinear and, depending on the model used, have a 

high order. Therefore, the solution to the problem of dynamic balancing of an unbalanced 

rotor, for example, using a ball multi-row self-balancing device (SBD) isan urgent problem 

at present. A sufficient number of scientific publications are devoted to the issues of rotor 

dynamics with self-balancing devices [1-12]. 

In these publications, the fundamental results of the dynamics of motion of an unbalanced 

elastic rotor were obtained with regard to the eccentricity of the center of the self-balancing 

device, when the race of the balancing balls has a circular or elliptical trajectory. In the case 

of a circular trajectory, the conditions for the existence of various types of stationary motion 

with the arrangement of balls along the raceare obtained, and the analysis of the obtained 
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conditions is conducted. The issues of the stability of particular motions and the passage of 

the region of critical velocity by the rotor are investigated. In the case of an elliptical race, it 

is shown that a fully balanced mode is not realized, but there existsa semi-balanced stable 

stationary motion. It should be noted that in these publications, for specific values of the 

dynamic and kinematic parameters of the system, numerical results were obtained in the rotor 

acceleration mode and at a constant value of the torque applied to the rotor axis. The 

conditions for the existence of this mode were analytically obtained, the question of the 

stability of the precessional motion of the rotor on elastic supports was investigated, and the 

analysis of the stability conditions obtained was conducted. 

In [8], a full-scale experiment was conducted and an extensive analysis of the dynamics 

of the SBD was performed, taking into account external damping, friction forces, inertia 

forces, and eccentricity of the balancing system. 

In [13-19], a dynamic unbalanced rotor with various designs of the SBDwas considered. 

In particular, in [15-19] the results of modeling ball balancers installed in a rotor system were 

considered, taking into account external excitations. It was shown that balancing balls 

couldbalance an external force by changing their position; the motion of a multi-mass passive 

type self-balancing device installed on a rotary machine was studied. Equations of disturbed 

motion were obtained, and the possibility of depression of equations in independent variables 

was shown. An analysis of the structure of the system of equations of motion was performed. 

The features of some special cases were considered, and analytical and numerical studies of 

the motion of an unbalanced flexible rotating shaft were conducted; the shaft is equipped 

with balls, the masses of which are distributed along its length. As a result of the study, 

various models of the SBD for balancing the rotor were proposed. Using the Lagrange 

method, nonlinear equations of motion were obtained and the balancing effect of the system 

under consideration was studied within the framework of classical mechanics. 

In [20, 21], a mathematical model was developed and the dynamics of various thin-walled 

elements of elastic structures was studied taking into account the dissipative characteristics 

of a material with a liquid dynamic absorber. In numerical studies, the expression for the 

logarithmic decrement of vibrations was determined and the effectiveness of a liquid-type 

dynamic absorber for damping harmful vibrations of a plate at low frequencies was shown. 

A model of aself-contained balancing device was proposedin [22]. The dynamics of the 

self-balancing device under rotation of the rotor at critical angular velocities was studied. The 

nonlinear dynamics of the motion of a rotor with two racetracks and two balls was studied 

numerically at a constant velocity of rotation and in an accelerating mode of motion of the 

rotor. 

The above is a review of only some of the known publications related to the study of the 

dynamics of theSBD. According to the formulation and the results obtained in the above 

studies, one can notice the incompleteness of research on a multi-row SBD, especially when 

a multi-row self-balancing device has not only an eccentric center but also angular errors. 

Therefore, the study devoted to solving these problems is relevant. 

2 Mathematical formulation of the problem 

The self-balancing system is an absolutely rigid rotor in the form of a cylinder mounted on a 

vertical elastic shaft on two supports. The model considered in [1-4] is takenas a 

mathematical model, with the addition that circular race lines (tubes) can perform rotational 

motion around one specific horizontal axis. It is assumed that the rotor is a cylinder of small 

height and performs a plane motion (in the framework of the Jeffcott model). The distance 

between the geometric center О and the center of gravity G of the cylinder, i.e., static 

eccentricity, is denoted by 
1s . There is a balancing device to eliminate the imbalance of the 

E3S Web of Conferences 376, 01105 (2023) https://doi.org/10.1051/e3sconf/202337601105
ERSME-2023

2



cylinder in the form of circular tubes with n balls of various masses, centered atpoint 
1O . 

We introduce the parameters 
12 ООs = and the angle of ОGO1=  between the 

directions 
1ОO andОG , which characterize the eccentricity of the center of the balancing 

system. We introduce the angle  between the horizontal axis of rotation of the tube and the 

direction
1ОО  (Fig.1). For the convenience of comparing expressions, the main notation is 

taken as in [1]. 

 

Fig. 1. Rotor with balancing system. 

To describe the state of the system, we introduce a fixed coordinate system Вxyz  with 

the Вz - axis parallel to the rotation axis passing through the support points. The 

axes lie in the plane of static eccentricity. A moving coordinate system О is also 

introduced, located at the fixing point and rotating with the rotor. In this case, the direction 

of the -axis coincides with the Вz -axis. To determine the relative motion of the ball 

races and balancing masses, we introduce moving coordinate systems  connected 

with tubes, the beginning of which is located in the center of the balancing system 
1О .  

-axes are directed along the horizontal axis of rotation of the tubes, and the jxO1  and

axes form the right-hand coordinate system (Fig. 1). 

The degree of freedom of the system (Fig. 1) is 3)1( ++= nsk . Thus,  are the 

coordinates of the center of mass of the rotor,   is the angle of rotation of the rotor around 

the vertical axis, are the angles of the greatest inclination of the plane of the 

tubes to the Вxy plane. To determine the position of the balls inside the tube, we introduce 

the angles  between the jyO1 -axis passing through the center 

ofrace circles, and the radii drawn from the center of circle to the balls. 

The mechanical system has geometric constraints. Lagrange's equations in generalized 

coordinates are used to derive differential equations of motion. 

The kinetic energy of the system can be written in the following form: 
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Here, Gv


 is the velocity of the center of mass of the cylinder; is the velocity of the 

center of the balancing mechanism; jiv


 is the velocity of the ball located in the tube with 

serial number j ; jiбср mmm ,,  are the mass of the rotor, the mass of the balancing device 

and the mass of the balls, respectively; ,GJ is the moment of inertia of the rotor relative to 

the main axis of the rotor; 
222

, zjyjxj JJJ are the moments of inertia of the tubes relative to 

the main axes of inertia. 

The introduced values are defined as follows: 
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Therefore, the kinetic energy of the system in explicit form in generalized coordinates has 

the following form: 
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If we take into account the potential energy of the elastic shaft and the external 

dissipative function in all variables, then we have: 
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In generalized coordinates, the equation of motion is written in the following form: 
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3 Stationary motion 

Below we consider stationary motions at constant angular velocity  = , that is, partial 

solutions are sought in the following form 

, .,,,, 0

0

0 constconstconstAconst jjjiji =======   
(4)

 

Where A  and 0 are the constant amplitude and phase of the rotational shear. 

The necessary conditions for the existence of stationary motion can be obtained by 

substituting (4) into (3), i.e.: 
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Thus, (5) are the conditions under which stationary motions of the form (4) hold. 

In the general case, finding an analytical solution to system (5) is a rather difficult task. 

Therefore, for specific values of the system parameters, for the case when there are two ball 
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races and one ball in each of them, the solution was obtained by a numerical method. For the 

following values of system parameters
 

;025.0;03.0;06.0;05.0;7.0;5.1 212111 mrmrkgmkgmkgmkgm бср ======

;/600;
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numerical method gives the following values: 
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It can be seen that the balls of races are located almost horizontally, the balancing balls 

are located approximately opposite to each other, and the rotor performs an unbalanced 

rotational motion with a constant angular velocity. 

3.1. Special cases
 

1. In the SBD system, all ball races are located in the same plane at a small angle ofм α 

relative to the horizontal plane, that is, not only eccentricity is considered, but also a small 

angular error ofmounting.  
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For 2,1 == ji  (i is the number of balls, j is the number of races), that is, there is one 

ball in each race, we have 
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The last two relations in (7) after some transformations have the following form: 
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From (8) we obtain  k=− 0
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In the second case, there is an unbalanced rotational motion of the rotor with a 
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To determine the location of the balls along the race, we substitute (9) into the first two 

equations in (7). 
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Where                    
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Thus, the position of the balls in the races is determined from relations (11), as in [1], 

with an offset by an angle  += . 

2. For 0=А , we have a balanced stationary mode. Substituting 0,0 00 ==  into (6), 

weobtain: 
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In the general case, the system of equations does not hold. But there are special cases that 

coincide with the results given in [1] with an angular accuracy of  += . 

It should be noted that, in the general case, finding an analytical solution to the system of 

equations (3) is a rather difficult task. Therefore, equation (3) below is solved numerically 

for specific values of the system parameters. Figure 2 shows the numerical results obtained 

over time, for the geometric center of the rotor with SBD and the position of the balls for the 

following parameters (there is one ball in each race):  

;025.0;03.0;06.0;05.0;7.0;5.1 212111 mrmrkgmkgmkgmkgm бср ======

;*600;
6

;
40

21 tradrad ==== 
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
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Fig. 2. Motion of the center of mass of the rotor over time. 
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Fig.2 a. Position of the first ball ( 1 ) over 

time. 

 

Fig. 2b. Position of the second ball ( 2 ) 

over time 

 

Analysis of the results obtained (Fig. 2a) shows that the rotor, which has a supercritical 

rotation velocity, over time makes steady motions in the vicinity of the amplitude value equal 

to mA 610*3 −= .Along with this, the following can be noted: over time, the balancing 

balls occupy a certain position in the SBD tube (Figs. 2a, 2b), that is, one of the balls tends 

to position 01 = , and second ball occupies position .25.02 rad−= Since the value of 

the oscillation amplitude of the center of mass of the rotor is quite small, the movement of 

the rotor can be considered as semi-balanced. 

4 Conclusion 

1. A mathematical model of a multi-row SBDwas developed, considering not only the 

eccentricity of the center but also the case when the races with balancing balls have an axis 

of rotation. 

2. The equations of motion were obtained in the form of the Lagrange equations in 

generalized coordinates. The conditions for stationary modes of motion of a multi-row 

SBDwere also obtained. Some partial cases were considered and the location of balancing 

balls along the race was established; semi-balanced and balanced modes of 

rotormovementwere considered. 

4. At a small angular error of the SBD, the results obtained differ from the previousresults 

by a term, which proportionally depends on the angular error of the balancing system. 

5. In the case of rotor rotation with a supercritical angular velocity at a small angular 

error, when the SBD contains two balancing balls, a numerical result for specific values of 

the system parameters was obtainedand an analysis of the results was performed. 
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