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Abstract. This study is devoted to the dynamics of an auto-balancing 

device (ABD) when the rotor rotates at critical angular speeds. In this 

article, a model of an auto-balancing device (ABD) is proposed. The rotor 

is not only eccentric about the symmetry axis but also has a horizontal axis 

of rotation. A mathematical model is proposed based on the Lagrange 

equations; it describes the nonlinear motion of a balancing system (BS) 

with two running lines with a different number of balls, considering 

eccentricity, angular error, and changes in the horizontal axis of rotation. 

The nonlinear dynamics of the rotor motion with two running lines and two 

balls at a constant rotation speed and in the accelerating mode of the rotor 

motion is studied by a numerical method, taking into account the change in 

the horizontal axis of rotation. 

1 Introduction 
The problem of balancing rapidly rotating rotors is especially acute with the emergence of 

mechanisms such as gyroscopic inertial navigation devices and gas turbine engines. A 

sufficient number of scientific publications were devoted to the problem of rotor dynamics 

with balancing devices. 

These publications can be divided into two parts. One part relates to an increase in the 

angular speed of the rotor in the subcritical zone; it is reduced to a design with high values 

of the rotor rigidity, and the other part relates to the issue of a smoother passage of the 

critical speed, which allows using the designs with thin rotors mounted on elastic supports. 

The use of balancing systems allows the rotor to more smoothly pass the critical angular 

speed and rotate at critical angular speeds while the loads on the supports remain within the 

allowable range. 
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General issues of the dynamics of various types of rotors mounted on elastic supports 

(such as determining the critical speeds for various models of the rotor and supports, 

stability of partial motions, dynamic characteristics for elastic and combined supports, and 

the influence of rotor parameters on critical speed) are considered in [1-10]. 

Various balancing devices and methods to solve the problem of motion at critical speeds 

are considered in numerous studies. Researchers often use auto-balancing devices for 

dynamic balancing since, unlike complex electronic balancing systems, they are quite 

simple to manufacture. 

Fundamental results were obtained in [11-18], where the dynamics of the motion of an 

unbalanced rotor mounted on an elastic shaft is considered, taking into account the 

eccentricity of the center of the auto-balancing device (ABD) during installation. The ABD 

presents a flat disk with a running line for balancing balls, and the rotor is modeled as a flat 

thin disk that performs a plane motion. The running line has a circular or elliptical path. 

When the running line of balancing balls has a circular path, the equations of motion are 

obtained in the form of the Lagrange equations in generalized coordinates. In the coordinate 

system rotating with the rotor, the conditions for the existence of stationary motion with 

different arrangements of balls along the running line are obtained, and the issues of rotor 

acceleration when passing through the critical angular velocity and stability of partial 

motions are investigated. 

In the case when the running path of the balancing balls is an ellipse, it turns out that the 

full balancing mode is not realizable, but a semi-balanced stable stationary motion exists. In 

these studies, the issue of the rotor dynamics in various modes, the stability of stationary 

motions using the A.M. Lyapunov methods, and a rather deep mechanical analysis of the 

model of a single-disk rotor with a multi-row balancing mechanism were considered. It was 

shown that the law of motion of balancing balls along the running line depends on external 

damping forces, friction forces, and the eccentricity of the balancing device (BD).

In [10], the issues of stable periodic motions of a vertically located rotor and the causes 

of the oscillatory motion were considered using classical methods of the theory of nonlinear 

oscillations. Numerical results were obtained for specific values of the system parameters. 

References [22-23] consider the problem of balancing a horizontally located rigid rotor 

with two balancing devices, each containing two balls. The issues of stability of balanced 

stationary motions and the issues of numerical solution with various initial conditions were 

considered. In contrast to [13], the eccentricity of the balancing system is not taken into 

account. 

Below we consider a model of an auto-balancing device, where the running lines can 

perform a rotational motion about a certain axis in a horizontal plane rotating together with 

the rotor. In a particular case, equations that consider the angular error of the balancing 

device can be easily obtained from the equations of motion.  

2 Methods 

2.1 Mechanical model 

A rotor model is considered a rigid cylinder fixed along the vertical longitudinal axis with 

an elastic shaft on two supports. The model considered in [12] was taken as a mathematical 

model. The running lines for balls can rotate about a horizontal axis, and the rotor performs 

a plane motion. Below (Fig. 1), for convenience and comparison, we will keep the 

parameters' designations in [1]. 
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Fig 1. Calculation scheme of the auto-balancing device

2.2 Mathematical model

Since the constraints imposed on the system are geometric, the Lagrange equation in 

independent coordinates was used to build a mathematical model. In this model, the system 

has 3��ns  degrees of freedom. Coordinates x  and y  of point O, the angle of rotation 

of the rotor � , angles ),...,1( sjj ��  between the coordinate plane Oxy  and the plane 

of the tubes, and angles ),...,1;,...,1( sjniji ���  for determining the positions of the 

balls inside the tubes (Fig. 1) are taken as the generalized coordinates. The kinetic energy of 

the system under consideration has the following form: 
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is the speed of the ball located in the tube with serial number j ; immm ,, 21  are the 

masses of the rotor, balancing device, and ball, respectively; ,GJ  is the moment of inertia 

relative to the principal axis of the rotor; 
222

, zjyjxj JJJ  are the moments of inertia of the 

tube relative to the principal axes; kji
���

,,  is the corresponding vector basis of the fixed 

coordinate system. Accordingly, the kinetic energy of the system under consideration in 

generalized coordinates has the following form: 
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with (1), (2), the Lagrange equation has the following form: 
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where the following relationship holds between the Cartesian coordinates of the center of 

mass and its coordinates in the rotating system [15]
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If, in the auto-balancing system, the running lines are located in the same plane, and the 

device is installed at a small angle j� , then from the system of equations (1), it is easy to 

obtain the equation of motion for this case, eliminating the equations concerning variables 

i� . For 0�� , we get the equations of motion that completely coincide with the 

equations obtained in [15] 

3 Results and Discussion 
The issue of the existence of stationary motion for the model under consideration can be 

obtained by substituting a partial solution 
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into the equation of motion (6), where A  and 0� are the constant amplitude and phase of 

the rotational shear. Substituting the solution of the form (6) into the equation of motion 
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Since the system of equations (2) has a complex structure, integration is a difficult task. 

Therefore, we study the solution of the nonlinear system of equations (4) by the numerical 

method in various combinations of the ABD arrangement with two balancing balls. Using 

the MAPLE 18 software package, the following numerical results were obtained: 

1. The balancing system is installed with eccentricity 1s and small angular error � ,

with one running line. The rotor rotates at a constant angular speed. Numerical results were 

obtained for the following values of the system parameters (Fig. 1): 

m1:=1.5;m2:=0.7;m3:=0.05;m4:=0.05;r:=0.3;s1:=0.001;s2:=0.001;alpha(t):=Pi/40;beta:

=Pi/6;c1:=0.1;c:=0.1;co:=0.1;theta(t):=600*t. 

The results obtained are presented in Fig. 2: Fig. 2a shows the change in the center of 

mass of the system over time; Fig. 2b shows the change in angle 1�  that determines the 

position of the first ball in the tube over time; Fig. 2c shows the change in angle 2�  that 

determines the position of the second ball in the tube over time. 

a)
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b) c)
Fig. 2. Change in the center of mass of the rotor and position of the balls in the tube over time

The analysis of these results shows that the center of mass of the rotor after a certain 

time makes a precessional motion, and the balancing balls occupy a fixed position along the 

path; that is, a semi-balanced case takes place. 

2. The balancing system is installed with eccentricity 1s , and small angular error � ,

with two running lines and two balls while the rotor rotates at a constant speed. Numerical 

results were obtained for the following values of the system parameters (Fig.1): m1:=2.5; 

m2:=1; m3:=0.05; m4:=0.08; r1:=0.3; r1:=0.4; s1:=0.001; s2:=0.001; alpha(t):=Pi/40;

beta:=Pi/6; c1:=0.1; c:=0.1; co:=0.1; theta(t):=300*t.

The results obtained, i.e., the change in the system's center of mass under rotational 

motion at a constant angular speed, are shown in Fig. 3.

An analysis of these results shows that the change in the position of the center of mass 

over time occurs in terms of beating pattern since the masses of the balls installed in the 

lines and the radii of the tube are close to each other. 

Fig. 3. Change in the center of mass of the system over time under rotational motion at a constant 

angular speed
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3. Acceleration mode. In this case, the system's center of mass (Fig. 1) with two running 

lines and two balls rotates about a certain axis in a short time. Numerical results were 

obtained for the following values of the system parameters (Fig.1): m1:=2.5; m2:=1;

m3:=0.05; m4:=0.08; r1:=0.3; r1:=0.4; s1:=0.001; s2:=0.001; alpha(t):=Pi/40; beta:=Pi/6;

c1:=0.1; c:=0.1; co:=0.1;
2100:)( tt �� . 

Figure 4 shows the results of calculating a system with two lines and two balls during 

acceleration mode: Fig. 4a shows the change in the center of mass of the system over time; 

Fig.4b shows the change in angle � that determines the position of the first ball in the tube 

over time; Fig.4c shows the change in angle � between the coordinate plane Oxy and the 

plane of the tubes.

b) c)

Fig. 4. Change in the center of mass and angle � of the ball position, and angle �
between the coordinate plane and the plane of the tube over time

4 Conclusions 
1. A mathematical model was proposed that describes the motion of the balancing 

system with two running lines and various combinations of ball arrangement, taking into 

account eccentricity, angular error, and changes in the horizontal axis of rotation.

2. The motion of the balancing system with eccentricity and a small angular error was

investigated at the rotor's constant angular speed of rotation with one running line.

3. The motion of the balancing system with eccentricity and a small angular error was 

investigated at the rotor's constant angular speed of rotation with two running lines and two 

balls.

4. The motion of the balancing system (Fig. 1) with two running lines and two balls was 

studied under the accelerating motion of the rotor, taking into account eccentricity, small 

angular error, and change in the horizontal axis of rotation.
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