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Abstract. The proposed paper is devoted to the derivation of equation of motion for the 

systems with nonholonomic servoconstraints, taking into account the release from 

servoconstraints containing only tangential components of reaction force of servoconstraints 

taken as control parameters. Chaplygin's problems and a gyroscope in gimbal mount are 

considered. 

1. Introduction 

The concept of servoconstraints was first introduced by A. Begen [1]. A feature of A. Begen's systems 

with servoconstraints is that for such systems the way to realize the constraints is necessarily taken 

into account, and the elementary work of servoconstraints reactions under virtual displacements 

allowed by the constraints is not zero. 

The aim of the paper is to control the motion of the system under consideration with the 

reactions of servoconstraints, realized by servomotors. A servomotor is a simple operating element 

that is part of industrial equipment. A servomotor is a special electric motor with negative feedback 

that is designed for use in machines with a digital control program (DCP), in production lines, and 

many other designs. Servomotors have a fairly high speed characteristics, as well as high positioning 

accuracy. With proper operation, the servomotor is able to operate 24 hours a day [2]. 

 

2. Literature review 

Modern servomotors have combined all the achievements of scientific and technological innovative 

progress, therefore they are able to develop tremendous rotational speeds at very high capacity A wide 

range of adjustment of shaft rotation of servomotor by software at significant acceleration or braking 

makes this equipment simply indispensable for use in machines or production lines and many other 

designs. 

The studies by A.G. Azizov [3 - 5] were devoted to the development of methods of analytical 

dynamics of systems with servoconstraints. He developed a constructive method for determining the 

reaction forces of servoconstraints, containing mismatches and allowing restoring the broken 

constraints. To study the systems with servoconstraints, he used the theory of parametric release, 

developed for a class of mechanical systems by N.G. Chetaev [6] and V.I. Kirgetov [7]. In [8], the 

dynamics of systems with servoconstraints was discussed, when the constraints were realized by 

controlling the inertial properties of the system. It was shown that the presence of symmetries allowed 
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reducing dynamic equations to a closed system of differential equations with quadratic right-hand 

sides. In [9], the methods to determine the reaction forces of servoconstraints at given displacements, 

at which the work of reaction force of servoconstraints  is equal to zero, are shown, i.e. 

servoconstraints are ideal for these displacements. 

In the monograph [10], the state of nonholonomic systems with high-order constraints, 

including systems with servoconstraints, was considered. The concept of a Hertzian representation 

point and the tangential space to the variety of all possible positions of a mechanical system at a given 

time was accepted as a mathematical tool; it allows us to consider from a single position the general 

issues of nonholonomic mechanics of material point systems and an arbitrary mechanical system. 

Further, the obtained mathematical tool was developed in the classical theory of motion of 

nonholonomic systems with constraints of any order, used in the study of a number of problems in 

control theory. However, in that work, explicit forms of the tangential and normal components of 

servoconstraints were not distinguished.  Please follow these instructions as carefully as possible so all 

articles within a conference have the same style to the title page. This paragraph follows a section title 

so it should not be indented. 

 

3. Discussion 

In this paper, in contrast to the aforementioned ones, we consider the problem of deriving the extended 

equations of motion of mechanical systems with non-ideal nonholonomic servoconstraints taking into 

account the release from servoconstraints; the work of the servoconstraints reactions on virtual 

displacements is nonzero for both non-released and parametric servo-free system. A system of 

equations is obtained for such systems; it contains only tangential components of the reaction forces of 

servoconstraints. 

Let the position of mechanical system be determined by generalized coordinates 

.,...,, 21 nqqq  Assume that the system is superimposed with d of nonlinear non-ideal 

nonholonomic servoconstraints of the form 

            0),,( tqq ii


  ;   ),...,2,1( d ,                                            (1)                              

Introduce kinematic characteristics by the relationships 

                ),,( tqqee ii


   ,      ( ;,...,2,1 k   )dnk                                  (2) 

which are identically satisfied by the relationships 

                  ),,( teqqq jii 
  ,  ;,...,2,1,( nji    ;,...,2,1 k   )dnk                        (3) 

In order to parametrically release the system from servoconstraints, introduce the independent 

parameters 

 tqq ii ,,    ;     n)1,2,...,i;,...,2,1(  d  

characterizing the deviation of the system from servoconstraints. 

Assume that the work of servoconstraints reactions on virtual displacements satisfying the conditions 

0



 i

i i

q
q





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are nonzero for both non-released and parametric servo-free systems. 

Denoting  ke , instead of relations (3), we can write 

                                         ),,,( teeqqq kjii                                                          (4) 

d)-nk;k1,2,...,;,...,2,1,(  nji   

For variations (4), we obtain the dependences 

                        
  

 












 k

k

i
y

i
i

e

q

e

q
q


   ,                                       (5)  

where 
 k

are the variations corresponding to the release parameters. 

Substituting relations (5) into the general equation of dynamics in generalized coordinates 

                                


















i

iii

ii

qRQ
q

T

q

T

dt

d
0


                                                (6)         

or 

    



































i

i

i s s

i
s

i

ii

ii

q
e

q

q
Qq

q

T

q

T

dt

d













.   

we obtain differential equations of motion of a system of the Chaplygin type equations: 

                s

s

s
ll

l

AQ
q

e

q

dt

d

q

TT

e

T

dt

d







 

































~
~~




                  (7)         

sk

s

skk

i k

l

k

l

lkk

BQ
q

e

q

dt

d

q

TT

e

T

dt

d
,

~
~~












 




































 

in which the left parts coincide with those obtained in [11]. 

Here 

 teeqTT kj ,,,
~~

   ,   

ii

i

y qe

q

 














  ,  

ii k

i

k qe

q
















 


 ,    






i

i
i

e

q
QQ





~  ,  
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








i k

i
ik

e

q
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



~  ,    
s

i

i

i
s

e

q

e

q
A
















,   


















k

i

i s

i
sk

e

q

e

q
B


,

 , 

)d1,2,...,;,...,2,1,(   ks  

Equations (7) are reduced to Voronets-Hamel type equations: 

                   
s

s

s AQW
e

TT

e

T

dt

d





 




 















~
~~~

                      (8) 

sk

s

skkk

kk

AQW
e

TT

e

T

dt

d
,

~
~~~

















 













  

where  












































 

iii

iii

i i q

e

q

e

dt

d

e

qq

e

q

dt

d

q

e
W














, 


























 





 k

i

k

i

i i

k

q

e

q

dt

d

q

e
W




   . 

With the exact implementation of servoconstraints (1), the first k equations (8) together with (4) make 

it possible to determine the motion, and the last d  equations (8) serve to determine the reactions of 

nonholonomic servoconstraints (1), when the values of s are given. Then the task is solved 

completely. If s is not set in advance, then the problem of stabilization or optimal stabilization of the 

motion of mechanical systems with servoconstraints can be set. 

Now let the system be superimposed with non-ideal stationary nonholonomic constraints, 

expressed by the equations a 

                            
i

iiqa 0


;     ( a,...,2,1 , ni ,...,2,1 ).                                       (9)  

imposing the following conditions on virtual displacements 

                                              
i

ii qa 0 .                                                          (10) 

Introduce the release parameters  , taking 

i

i

iqa    ;   )n1,2,...,;,...,2,1  ia  

Often in practice there are problems in which the introduced relations (4) are nonlinear, although the 

equations of constraints (9) are linear. Choosing relations of (4) type for a mechanical system with 

servoconstraints (10), we can write the equations of motion in the form of (7) and (8). 
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As an example, consider the Chaplygin’s problem [10-13]. The problem is as follows. A solid body 

rests on horizontal plate with three points, two of which are freely sliding legs, and the third is the 

contact point of a sharp (pointed) wheel. The position of the body is determined by horizontal 

coordinates  and   of the contact points of the wheel and the angle   made by the axis, invariably 

connected with the body and lying in the wheel plane with a fixed axis O . The horizontal projection 

of the center of gravity of the body is determined by the coordinates   and   along the moving axes. A 

servomotor is installed on a solid body to realize a constraint at which the speed of the point A of the 

moving plane is always directed along the moving axis Ax , i.e., its projection Ay  on the axis Ay is 

equal to zero at any time (Ax is directed along a sharp wheel). Then the servoconstraint equation can 

be written as 

0cossin   
Ay

  . 

We believe that no active forces act on the system other than gravity and servo motor reaction forces. 

The mass of the servomotor is neglected. The kinetic energy of the system is written in the form 

    2222

sincos()cossin(
2

  k
M

T    , 

where M - is the mass of the body, k is the radius of inertia relative to the vertical axis passing through 

the center of the mass of the body. 

Introduce the kinematic characteristics by independent relationships 

                                1e  ,    
2/122

2 )(   e ,     cossin3
 e  .                          (11)   

Then expressions (4) can be written as 

               1e  ;    coscos)( 3

2/12

3

2

2 eee  ;  sinsin)( 3

2/12

3

2

2 eee  .    (12) 

Note that relationships (11) and (12) are nonlinear, although the constraint equations are linear. 

Parameter 3e  characterizing the system deviation from the servoconstraint is taken as a release 

parameter. 

Derive the equations of motion in the form (8). Given (12), we find the expression for kinetic energy 

    2

31

22/12

3

2

21

2

1

2 )(
2

~
eeeeeek

m
T    

The Voronets-Hamel coefficients are: 

01

1 W ,     02

1 W  ,    
2/12

3

2

2

3

1 )( eeW    , 

01

2 W  ,     
)(

)(
2

3

2

22

322332

2
eee

eeeee
W







 ,     

2/12

3

2

2

233

2
)( ee

ee
W


   . 
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01

3 W  ,   
2

3

2

2

2/122

22123232

3

)(
3

ee

eeeeeeee
W







 ,   

2/12

3

2

2

313

3
)( ee

ee
W


  . 

The Voronets-Hamel type equations for the problem under consideration have the form 

1

2/12

3

2

213132/12

3

2

2

33222

1 )(
)(

 












 eeeeee

ee

eeee
eM 


  ,                                                  (13)                   





















22/12

3

2

2

21
22/32

3

2

2

322331

2

3

2

221

)()(

)()(
e

ee

ee
e

ee

eeeeeeeeee
M





 

2

3

2

2

2

2
22

3

2

2

32

2

1

2/12

3

2

2

2

2

1

2/12

3

2

2

31

2

3

2

22

32233

)()()()(

)(

ee

e

ee

eee

ee

ee

ee

ee

eee

eeeee




























 


 , 

 






















 232/12

3

2

2

2

3

2

2213

2

3

2

2

2/32

3

2

2

233221

2

3

2

213
1

)(

1

)(

)()(
ee

ee

eeeee

eeee

eeeeeeeeee
eM 





  

  ,
)(

)()(
2/12

3

2

22

31
2

2

2

2

1

2/12

3

2

23

2

1

2/12

3

2

22123
eee

ee
eeeeeeeeeeee


   

where 

2222   k  

If the servoconstraints are ideal, that is, 021    and  03 e , then the equations obtained in [11] 

will follow from the first two equations (13) 

                 02121

2  eeee   ,      02

12 1
 eee     . 

From the last equation (13) we find 

              )( 21

2

11 eeeeM      . 

To further investigate the system motion for stability or controllability, servoconstraints multipliers are 

taken as control parameters. 

Now, as a second example, consider a gyroscope in gimbal mount with a nonholonomic 

servoconstraints 

 

                                                  0sin   
z

                                    (14) 
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This constraint means that the projection of angular velocity of the gyro rotor on the axis 
1Oz is equal 

to zero at every point in time.  111 ,, zyOx  is connected with the inner ring [14], that is, the angular 

velocity always remains in the plane  11, yOx . 

The left side of equation (14) is taken as a release parameter 

 sin   

We introduce the kinematic characteristics )3,2,1( iei
 

         1e ,   2e ,    sin3
 e  ,     (

3e ) 

Then expression (4) takes the form 

                         
1e ,   2e ,    sin13 ee                                             (15)                

Taking into account formulas (15), we obtain 

           2

21

2

3

2

1

2

1

2

12 )(sincos)(
2

1~
eBACeeCAAAT    . 

For the Voronets-Hamel coefficients, the values are: 

02

1

1

1 WW  ,    02

2

1

2 WW ,    03

3

2

3

1

3  WWW   ,  

cos2

3

1 eW  ,      cos1

3

2 eW    . 

Equations of type (8) for the problem in question have the form 

 














s

ss AW
e

TT

e

T

dt

d
11

11

~~~






 

 ,  

     














s

ss AW
e

TT

e

T

dt

d
22

22

~~~






 

  ,  

  














s

ss AW
e

TT

e

T

dt

d
33

33

~~~






 

 

or  

    cossincos)( 321

2

1

2

12 eeCeCAAA   

                 
1

2

211 )sin1(2sin)(   eeAAC   ,                                                 (16) 

231

2

11121 cossincos)()(   eeCeAACeAB  , 
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 sin13. eC    . 

Kinematic equations (14) should also be added to them. 

At 03 e , i.e., when the system is not released, we get 

  1

2

21111

2

1

2

12 )sin1(2sin)(sincos)(   eeAACeCAAA   

2

2

11121 sincos)()(   eAACeBA   

.sin1    

The first two equations give an extended equation of gyroscope motion with non-ideal 

servoconstraints in which deviations from servoconstraints (14) are absent. 

If assume that the servoconstraint (14) is ideal, then from the last equation we obtain 

0  

This proves that equation (14) is an integral of motion. 

4. Conclusion 

Extended equations of motion such as the Chaplygin and Voronets-Hamel equations of mechanical 

systems with non-ideal nonholonomic servoconstraints, considering the release from servoconstraints 

were derived. It was accepted that the work of servoconstraints reactions on virtual displacements is 

nonzero for both non-released and a parametrically free from servoconstraints systems. A system of 

equations is obtained for such systems; it contains only the tangential components of the reaction force 

of the servoconstraints in a number that is equal to the number of degrees of freedom. It also contains 

normal and tangential components of the reaction forces of servoconstraints, which are equal in 

number to the number of equations of servoconstraints. 
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