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Abstract. The proposed work is devoted to the study of mechanical systems with releasing 

nonholonomic servoconstraints on controllability and stabilization. In this case, the reaction 

forces of the servoconstraints are decomposed into the normal and tangent components. The 

factors of tangent components are taken as control parameters. A technique is proposed for 

determining the reaction forces of servoconstraints providing stabilization of motion relative to 

the variety determined by nonholonomic servoconstraints. As an example, the problem of a 

gyroscope in a cardan suspension with nonholonomic releasing servoconstraints is considered. 

1. Introduction 

The aim of the paper is to control the movement of the system under consideration with tangential 

components of the reactions of servoconstraints, carried out by servomotors. A servomotor is an 

unpretentious working element that is part of industrial equipment [1]. This paper lists all types of 

servomotors and stepper motors. 

In the studies by A.G. Azizov [2] a constructive method for determining the reaction forces of 

servo-links, containing mismatches and allowing to restore the broken constraints was developed. To 

study the systems with servoconstraints, he applied the theory of parametric release, the development 

for a class of mechanical systems given in the works of V.V. Rumyantsev [3] and V.I. Kirgetov [4]. In 

[5], the dynamics of systems with servo-constraints was discussed, when the constraints are realized 

by controlling the inertial properties of the system. It was shown that the presence of symmetries 

allows one to reduce dynamic equations to a closed system of differential equations with quadratic 

right-hand sides. In [6], methods were shown for determining the reaction force of servoconstraints at 

given A-displacements, at which the work of the reaction force of servoconstraints is zero, i.e. 

servoconstraints are ideal for these displacements. 

In [8-12], mechanical systems under the influence of various forces are considered; nonlinear 

positional, potential, dissipative, gyroscopic forces, and radial correction forces. Gyroscopic forces are 

considered dominant, which is expressed by the presence of a large parameter - the multiplier for them 

in the equations of motion. The conditions for the parameter growth rate are established, which 

guarantee the asymptotic stability of the equilibrium position both for the linear system and for 

substantially nonlinear dissipative forces specified by the homogeneous Rayleigh function. It is shown 

that for any values of the system parameters (mass of loads, spring stiffness), it is possible to provide 

asymptotic stability of the equilibrium position due to the addition of an additional load with a damper 

via a non-linear spring. An approach to the study of stability and stabilization of mechanical systems 

with nonlinear positional forces based on the decomposition of the equations of perturbed motion into 

two isolated subsystems is proposed. The stabilization conditions for systems with nonlinear non-

stationary potential forces due to forces of a different structure are found. 

However, in these works, the explicit forms of the tangent and normal components of 

servoconstraints, which determine the number of control parameters, were not distinguished. 
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2. Methods 

In this paper, in contrast to the above-mentioned studies, we consider the problem of composing the 

equations of the disturbed motion of mechanical systems with nonholonomic servoconstraints, taking 

into account the release from servoconstraints. It is accepted here that the work of the reactions of 

servocommunications at virtual displacements is nonzero, for the systems of non-released and 

parametrically released from servoconstraints. 

Let the position of the mechanical system be determined by Lagrange coordinates 
nqqq ,...,, 21

. a of 

non-ideal linear nonholonomic servoconstraints are imposed on the movement of the system 

                          0
i

i  iqa  ;        n),...,2,1i;,...,2,1(  a                        (1)           

We introduce kinematic characteristics independent with respect to iq   

      iqe 
i

i  ;     n),...,2,1(                                        (2)                      

from here 
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Suppose that the forces of servoconstraints reactions are of the form 
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where  are the servoconstraints factors,   some proportionality coefficients. 

Denoting by   
the left-hand sides of the equations of servoconstraints computed under the actual 

movement of the system, instead of (3) we obtain 
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which allows us to write down the equations of motion and kinetic energy obtained in [7], in the form 

of Voronets-Hamel equation: 
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Now we compose the equations of the disturbed motion of the system. To do this, we first write 

equation (4) in a more compact form: 
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),...,1;,...,2,1;,...,2,1;( nknsek    

In the case under consideration, the expression of kinetic energy has the form 

   ),...,2,1,(
~

2

1~
nkseeAT

s

ks

k

sk                                   (6)           

where 

),...,,(
~~

21 nsksk qqqAA   

Suppose further that at 
0

ss     and 
0

     , equations (5) with (2) allow a particular solution in 

the form 
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Introducing the excitations 
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As is known, in the monographs [8, 9], the sequence of composing the equation of disturbed 

motion is shown. Performing this sequence, we obtain the equations of disturbed motion: 
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   and 1  are the terms above the first order of smallness are relative to x , x   and p . 

Next, we propose a technique for determining the forces of servoconstraints that ensure motion 

stabilization relative to the manifold determined by servoconstraints. It is based on the structural 

features of equations (5), for which the following theorem is true. 

Theorem: The controlled system (5) and (3) can be stabilized with respect to the manifold determined 

by the servoconstraints (1). 

For the proof, along with the equations of motion, we consider the system  

                                ),(  ete ss  ;     ),...,2,1,( as                                 (9)             

with asymptotically stable zero solution. Substituting the kinetic energy (6) into equations (5), we 

obtain  

 
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where / ** / denotes the sum of terms that do not contain derivatives of quasi-coordinates in time. 

Since 0)
~

det( 1, 

n

ksskA , then the equation can be represented as 

           sssjkk AqtGe   
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where 
*

sA  are the elements of the determinant reciprocal with the determinant.
 

skA
~

 . Substituting 

system (9), we obtain a system of equations with respect to 

                GA
s

ss  *
 

The latter system is solvable relative to s  and allows explicit determination of the factors 

                  ,,, siss eqt  

In the particular case of systems with ideal constraints in the obtained expressions, 0 is set and 

equations (5) and (3) determine the motion of the system 

Now consider a gyroscope in a gimbal mount with nonholonomic servoconstraints. 

                                         0sin   
z                                         (11)                            

This constraint means that the projection of the angular velocity of the gyro rotor on the axis 1zO is 

zero at each moment of time  11,,
1

zyOx
 
connected with the inner ring [10], i.e. angular velocity 

always remains in the plane  1,
1

yOx
. The equations of motion of the system are taken in the form: 
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                                    1

2
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231

2

11121 cossincos)()(   eeCeAACeAB    , 

                                                      sin13. eC    . 

Let the equations of motion of system (12) allow a particular solution 

                              01 e  ,    0   ,     01                                                   (13)                            

02 e  ,    0   ,     02   

ke 3  ,    0  kt  ,     0  

For disturbed motion 

  11 pe   ,    10 x  ,     11 u                                           (14)             

22 pe   ,    20 x   ,   21 u  

ke 3  ,    30 xkt    ,  3u  

Substituting values from (14) into (12), we obtain  
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For the convenience the equation (15) is written in the form 
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Assuming that ii xy 12 , ii xy 2  a normal system of the six order is obtained  

21 yy   

112 u
L

D
y

L

N
y   

43 yy   

224

1
u

G
y

G

N
y   

 
65 yy 



CONMECHYDRO – 2020

IOP Conf. Series: Materials Science and Engineering 883 (2020) 012164

IOP Publishing

doi:10.1088/1757-899X/883/1/012164

7

3126

1)(
u

C
u

CL

CDLM
y

L

MN
y 




 

Composing matrices 3K in the form (17), make a matrix [11-14], 

          QPQPQPQPPQQK 5432

3 ,,,,,                                  (17)       

It is easy to verify that the rank of the matrix 3K is six. Indeed, the determinant of a matrix composed 
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So, the system is completely controllable. Similarly, it can be shown that at  0u 21  u
 

a 

gyroscope, as a control object with nonholonomic constraints (11), becomes uncontrollable. 

To solve the stabilization problem, we use the theorem. 

Writing down the equation 

),( 33 tee   

with asymptotically stable zero solution and making up the system  (10)  
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we obtain 

                                            ),(sin 31 teC                                                     (18)                               

3. Results and Discussion 

This system, which describes the motion of the gyroscope, is asymptotically stable with respect to the 

variable characterizing the release of the gyroscope from condition (11). 
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Taking relation (13) as a particular solution, we obtain the following equations in a first approximation 
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Then, relation (16) of the law of formation of the normal components of the servo-constraints reaction 

has the form 

       013

3

sin


 



 p

e
C  

4. Conclusion 

Equations of disturbed motion are derived containing the normal and tangent components of 

nonholonomic servoconstraints taken as the control parameters. A technique is proposed for 

determining the reaction forces of servoconstraints, which ensures motion stabilization relative to the 

manifold determined by nonholonomic servoconstraints. A theorem is proved that gives a method for 

determining the reaction force of a nonholonomic servoconstraints. A gyroscope in a gimbal mount 

with nonholonomic servoconstraints is considered. It is shown that when examining a gyroscope in a 

gimbal mount with non-holonomic servoconstraints on controllability, it is advisable to take 

servoconstraints as non-ideal ones. Otherwise, to achieve the system under consideration, it is 

necessary to impose new constraints or various (dissipative or gyroscopic) forces on controllability. 
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