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Abstract. The proposed study is devoted to the derivation of the equation of disturbed motion 

of mechanical systems with releasing servoconstraints, in which the multipliers of the normal 

and tangential components of the servoconstraints reaction forces are taken as control 

parameters. A technique is proposed for determining the reaction forces of servoconstraints 

providing motion stabilization relative to the manifold determined by holonomic 

servoconstraints. As an example, the problem of a gyroscope in a gimbal mount with 

holonomic releasing servoconstraints is considered. 

1. Introduction  

The aim of the study is to determine the reaction forces of servoconstraints that provide motion 

stabilization with respect to the manifold determined by holonomic servoconstraints, carried out by 

servomotors. A servomotor is an unpretentious working element that is part of industrial equipment. 

Modern servomotors have combined all the achievements of scientific and technological innovative 

progress, therefore they are able to develop tremendous speeds of rotation at very high power. A large 

range of rotation adjustment of the servomotor shaft using software with significant acceleration or 

braking makes this equipment simply indispensable for use in machines or production lines and many 

other designs [1]. 

The concept of servoconstraints was first introduced by A. Begen [2]. A feature of A. Begen's 

systems with servoconstraints is that for such systems it is impossible to escape from the method of 

constraints realization, and the elementary work of the servoconstraints reactions at virtual 

displacements allowed by the constraints, generally speaking, is not zero. As is known [3], 

servoconstraints are invariant relations of the obtained differential equations of motion. Therefore, in 

the presence of disturbances that violate the servoconstraints conditions, the question arises of taking 

into account the release and solving problems of motion stabilization with respect to the manifold 

determined by servoconstraints [4]. In [5], the methods for determining the reaction force of 

servoconstraints at given displacements are shown, on which the work of the reaction force of 

servoconstraints is zero, i.e. servoconstraints are ideal for these displacements. However, in this work, 

explicit forms of the tangent and normal components of the servoconstraints are not distinguished. 

2. Methods 

Let the system, the position of which is determined by generalized coordinates nqq ~,.....,~
1 , 

impose restrictions in the form of servoconstraints 
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                                 0,~,...,~,~
21 tqqqf n  ;          ,...,2,1               (1)        

 

The resulting system, while remaining holonomic, has an   degrees of freedom, and from 

equations (1) it is possible to express the parameter a  in terms of the other parameters an   and 

these latter can be taken as the generalized coordinates of the new system, i.e. 

                 

               tqqqqq kii ,,...,,~~
21 ;    ankni  ;,...,2,1             (2)                

 

and the variation of coordinates is interconnected by conditions 
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Bearing in mind the continuous parametric release, we introduce additional independent quantities 

 nkpp ,...,1 characterizing the release of the system from servoconstraints. Subsequently, 

the left-hand sides of the servoconstraint equations (1) calculated on the real motion [4] are taken as 

quantities
p . The possibility to provide continuous release in the dynamics of systems with 

servoconstraints by changing the parameters is of interest, first of all, from the point of view of 

determining the reactions of servoconstraints which provide the required change in parameters, in 

particular, stabilization of the system's motion with respect to servoconstraints. 

It is assumed that the equations of motion released from servoconstraints obtained in [6]  
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allow some partial solutions that are compatible with servoconstraints. It is noted that the arbitrariness 

in the choice of excitations of the servoconstraints factors can be used to stabilize the undisturbed 

motion. To determine the reactions of servoconstraints providing motion stabilization relative to the 

manifold determined by holonomic servoconstraints, we make up the equation of disturbed motion. 

For convenience, equations (5) and (4) are written more compactly: 

                                  
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where    ia is the known functions of coordinates and time  

                  

                  

                                        0
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1~
TqBqqAT i
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i  





                              (6)                         

 

where  0T  and coefficients iA , B are functions of generalized coordinates and time. 

Bearing in mind the stabilization problem, consider some particular solution 

                             )(tqq ii  ,  0kq ,   
0
    ,   

0
ii   .                        (7)                       

 

                              kq    ( ),...,2,1 a  ,     0i         ),...,2,1( ki   

 

Coordinate values iq , factors and arbitrary coefficients  for disturbed motion are 

 

                iii xtqq  )( ,   0kq ,     u 0
 ,   sss u                 (8)         

 

),...,2,1( nkks   

 

 

where       u   ),...,2,1( k ,      su   ),...,1( nks   are the control parameters. 

         Following the sequence in composing the equation of disturbed motion as shown in [7,8], we 

obtain the equations of disturbed motion: 
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Ф are the terms of the higher than the first order of smallness with respect to xx ,   and  u . 

The solution to the problem of motion stabilization (5) is reduced to studying the stabilization 

problem in terms of the variable equations of disturbed motion (9). In these equations 

qba iii  ,, and iс   for a given undisturbed motion are the known functions of time. 

Obviously, the terms 





 xqx ii   ,b  and 


 xci  can be interpreted as forces, and the 

forces 


 xqi   are gyroscopic ones. To verify this, it suffices to note that according to (10), a 

matrix composed of coefficients iq  is skew-symmetric one, i.e. ii qq   . Thus, in deriving 

the equations of disturbed motion, as a rule, the terms appear that can be interpreted as gyroscopic 

forces. 

Below we propose a technique for determining the forces of servoconstraints, which provides the 

motion stabilization relative to the manifold determined by servoconstraints. The technique is based on 

the structural features of equations (5), for which the following theorem is true. 

3. Results and Discussion 

Theorem: A controlled system (5) can always be stabilized with respect to the manifold defined by 

constraints (1). 

For the proof, along with the equations of motion, we consider the system 

 

                     t),,( rrss qqq    ;  n),...,2,1,(  kkrs              (11)            

 

with asymptotically stable zero solution. Substituting the kinetic energy into equations (5), we obtain 
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 iQ/*/*  

 

where  /**/ is the sum of terms not containing the second derivatives of the coordinates with respect to 

time. Since 0)det( 1, 
n

jiiA , then the equations can be represented as 
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the system (5) instead of n)...,,1(  krqr  the value from (6), a system of equations is 

obtained with respect to 
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 The latter system is solvable relative to s  and allows explicit determining the factors 
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In a particular case of the systems with ideal constraints in the obtained expressions assume that 

0j ; equations (5) and (1) determine the motion of the system. 

As an example, consider a gyroscope in a gimbal mount with a fixed base. Let the equations of 

gyroscope motion with a holonomic release servoconstraints 
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have the form 
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                                                                                      2cos   C   , 
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As a particular solution, we take the relations 

 

             0  ,   0  ,   0 ,   0 ,   021   .              (15)                

 

Introducing disturbances 

 

      10 x , 20 x  , 3x , 3u , 11 u ,   22 u       (16)   
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substitute them into equations (14)  and obtain 

 

               212011120
2

120
2

12 2sinsincos xxxAACxxCCxAAA  
 

 

  

        13202120320 sinsincos uxxCxxxxxC   
 

 

          3120
2
1201121 cos2sin

2

1
xxxCxxCCAAxAB  

 

 

                                                                                                                                                                                                             

  2120cos uxxC    

 

                    321201203 cossin uxxxCxxCxC     

Expanding the input functions in series in powers 2x , we have 

 

   ...cossinsin 20020 xx       ,  
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  ...2sinsinsin 200
2

20
2 xx        ,  

  ...2sincoscos 200
2

20
2 xx       , 

 

where the dots denote terms containing 2x
 
in powers higher than the first one. 

The equations of disturbed motion of the gyroscope in the first approximation take the form 

 

                               1321 uxMxNxL     ,                                     (17)            
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12 sincos  CCAAAL                     (18)  
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Under conditions 0iu  ( )3,2,1i  the zero solution of system (17) is not stable or stable, but 

not asymptotically stable. Indeed, the characteristic equation of the system has the form 
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The system under consideration is stable in the first approximation if all the roots relative to 
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The controllability of the gyroscope as a control object with three controls is studied. 

Let's compose a matrix [9 Krasovsky]. 
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The determinant of a matrix composed of matrix columns Q  and )(PQ , is equal to 

)(/)( 23 MLCGMNGLC  and, therefore, the rank of the matrix (20) is six. The latter 

means that the gyroscope in the gimbal mounts as a control object with non-ideal releasing 

servoconstraints (13) is completely controllable.  

To study the gyroscope controllability with normal components of the servoconstraints reactions 

(13), we compose a matrix of the form (20) in which 
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The matrix 1K
 
is square, containing 6 rows and 6 columns. The determinant of the matrix 1K

made up of these columns is zero, and therefore, the rank of this matrix is less than six. The latter 

means that the gyroscope in gimbal mount as a control object with normal components of 

servoconstraints reactions is not completely controllable. 

Thus, in the study of mechanical systems with servoconstraints on controllability, it is advisable to 

accept servoconstraints as non-ideal ones, otherwise, to achieve the system controllability, it is 

necessary to impose new constraints or various (dissipative or gyroscopic) forces [10, 11]. 
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If to use Theorem 1 to solve the stabilization problems, then we should restrict ourselves to the case 

when the constraint (13) can be considered as ideal, so, equation (9) is written in the form 

 

                                            ),(                                                 (21)                    

 

Composing equations (14) and taking relation (15) as a partial solution, we obtain the following 

equations 

                                       0321  xMxNxL                                     (22)                   

             

012  xNxG   
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where the coefficients NML ,,  and  G    are determined by relations (19). 

System (22), describing the equations of disturbed motion, is asymptotically stable with respect to 

the variables characterizing the release of the gyroscope from condition (13). 

To determine the reaction forces of servoconstraints, the following equation is used 

  )(sin 0
C  

 

which, together with the first equation of system (22), allows finding the following law of 

formation of the servoconstraint forces: 
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                 (23)       

 

Note that during stabilization with respect to the angular velocity of rotation, function (21) can be 

taken in the form 

 

)(    

and instead of (23) we have 
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4. Conclusion  

The equations of disturbed motion are compiled containing the normal and tangent components, which 

are accepted as control parameters. A technique is proposed for determining the strength of 

servoconstraints, providing motion stabilization relative to the manifold determined by 

servoconstraints. In the study of mechanical systems with servoconstraints on controllability, it is 

advisable to accept servoconstraints as non-ideal ones, otherwise, in order to achieve the 
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controllability of the system under consideration, it is necessary to impose new relationships or various 

(dissipative or gyroscopic) forces. 
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