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Abstract. In recent years, flexible pipes made of synthetic polymer 

materials are being rapidly introduced into practice. Pulsating currents are 

important in driving water and other liquids in main pipes. This paper 

examines the pulsating currents of a viscous incompressible fluid in an 

elastic pipe. The necessary hydrodynamic parameters will be determined 

by solving the problem, such as distributions of pressure, velocity, flow 

rate, propagation velocity of the pressure pulse wave, and their attenuation. 

For the first time in this article, the decrease in hydraulic resistance in a 

pulsating flow through pipes due to the elasticity of the wall will be 

determined. The dependence of the dimensionless value of the pressure 

pulse wave on the vibrational number � is studied. The pulse wave speed is 

compared with the speed of Moens-Korteweg, с�and significant 

differences between them are found. The dependence of the reciprocal 

value of attenuation, related to the wavelength, on the vibrational number 

� is also studied; it is shown that the attenuation is free at lower values of 

the Womersley vibrational parameter, practically equals zero, and at large 

values of which it asymptotically approaches unity [1-9]. 

1 Introduction 
Recently, the intensive introduction into practice of flexible pipelines made of polymeric 

synthetic materials is of great importance [1-3], pulsating fluid flows in elastic pipes. In this 

regard, studies of pulsating flows of a viscous fluid in pipelines, taking into account the 

elastic properties of the wall, have become relevant. Also in this area, pulsating fluid flows 

in pipes are of no small importance, taking into account the various mechanical properties 

of the wall [12–20]. Proceeding from this consideration, in this article, pulsating flows of a 

viscous fluid in an elastic pipe will be investigated. By solving the problem, the necessary 

hydrodynamic parameters will be determined, such as distributions of pressure, velocity, 

flow rate, propagation velocity of the pressure pulse wave and their attenuation. For the 

first time in this article, the decrease in hydraulic resistance in a pulsating flow through 

pipes due to the elasticity of the wall will be determined. 
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2 Methods
Let us formulate a simplified problem, which is of no small importance in studying the 

pulsating flow of a viscous fluid in pipes with elastic walls [2–17]. To do this, consider that 

the relative amplitude of the wall deformation to the radius is too small compared to unity, 

and so on
1

R
R
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�� . And also, the flow of liquid occurs in a long pipeline, so that
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� � �� . Then, neglecting small quantities from the system of equations for the flow of 

a viscous fluid, we have
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To deform the pipeline wall based on the accepted assumption of small wall 

deformations, it is sufficient to use the Lightfoot equation [1-3]. 
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where ru is the ratio of radial deformation R�  to the radius of the pipe to rest; 

cp  is ambient pressure; ��  is pipe wall density; h  is wall thickness; E  is modulus of 

elasticity; R is radius of the middle surface of the pipe wall; 1ν  is Poisson's ratio. 

The left side of the equation expresses the inertia of the pipe wall; however, they are 

negligible, so we neglect them. Then (2) has the form
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Note that fluid adhesion and pipe wall permeability are determined by the boundary 

conditions for the velocity components: 
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If the wall deformation is small, then we can assume that 

rr r R u r r R� �� 
 ��    (5)

Differentiating equations (3) concerning the variable t , taking into account (5), we write 
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where .cp p p� �
By integrating the continuity equation from 0 to R we find 
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where xV  is the average flow velocity. 

Then the relationship between pressure and average velocity is described by the 

equation 
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where 
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Thus, the simplified system of equations for the motion of a viscous fluid in pipes with 

elastic walls will take the final form: 
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To solve a simplified problem, under the conditions that in the initial and final sections 

of the pipe, the fluid pressure is given in a complex form, as is done in the previous 

paragraph, which corresponds to the case under consideration, and so on 
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Here 0np and nLp  are oscillation amplitudes; � is circular frequency of oscillations; 

n  is harmonic number. 

We seek the solution to the system of equations (10) in the form 

( , , ) ( ) ,in t
x xV x r t V r e �� ( , ) ( ) .in t

xp x t p x e ��

Then the system of equations takes the following form: 
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Solution of the system of equations (11) taking into account the boundary conditions 

(10) written in the form 
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Multiplying both parts of formula (14) by 
2

2r
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 and integrating from 0 to � we obtain
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Differentiating (17) concerning x and substituting its value from equation (13) into 

place � �xV x
x

�
�

, we obtain equations for determining the pressure 
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For this equation, the boundary conditions are 
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The solution of equation (18), taking into account the boundary conditions (19), has the 

following form: 
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3 Results and Discussion 
From the obtained formulas (20) and (21), it can be seen that the velocity and 

pressure essentially depend on the complex parameter 
in zL
a
�

. Therefore, the 

complex parameter will be denoted by i" #
 , so on. 

in zL i
a
� " #� 
     (22) 

For simplicity, let's take 1n � . Then
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Separating the real and imaginary parts of expression (23), we obtain 
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Here " , as previously mentioned, is the coefficient that characterizes the attenuation of 

oscillations and 

#
1

is characterizes the dimensionless velocity of the pulse wave. If we 

denote the speed of propagation of a pulse wave through c , then c L
c c

�
#& &

�  , where 

E3S Web of Conferences 365, 03026 (2023) https://doi.org/10.1051/e3sconf/202336503026
CONMECHYDRO - 2022

 

7



R
Ehc
�2

�&
is the Moens-Korteweg formula; E is modulus of elasticity; h  is wall 

thickness; � is liquid density; R is pipe radius, L is pipe length. 

Fig.1. Dependence of the dimensionless value of the phase velocity on the vibrational number �

Based on the obtained formulas, we will analyze the pulse wave propagation velocity 

and wave attenuation depending on the oscillatory Reynolds number. 

Based on the obtained formulas, we will analyze the pulse wave propagation velocity 

and wave attenuation depending on the oscillatory Reynolds number. On fig. 1. shows the 

dependence of the dimensionless value of the pressure pulse wave on the vibrational 

number � . It was revealed that the propagation velocity of a pressure pulse wave increases 

with an increase in the elasticity modulus of the surrounding tissue and an increase in the 

wavelength. 

Here, too, the speed of the pulse wave is compared with the Moens-Korteweg speed, ��
and significant differences between them are revealed at lower values of the Womersley 

vibrational parameter, at large values of which no significant differences are observed. 

On fig. 2. shows the dependence of the reciprocal of the attenuation, related to the 

wavelength, on the vibrational number � . 
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Fig. 2. Dependence of the reciprocal value of attenuation referred to wavelength from the vibrational 

number � . 

The results show that the attenuation waves at lower values of the Womersley 

vibrational parameter is practically equal to zero, and at large values, it asymptotically 

approaches unity. 

4 Conclusion 
The dependence of the dimensionless value of the pressure pulse wave on the vibrational 

number is studied � . It was revealed that the propagation velocity of a pressure pulse 

wave increases with an increase in the elasticity modulus of the surrounding tissue and an 

increase in the wavelength. The speed of the pulse wave is compared with the speed of 

Moens-Korteweg c& , and revealed significant differences between them occur at lower 

values of the Womersley vibrational parameter, at higher values of which no significant 

differences are observed. The dependence of the reciprocal value of attenuation, related to 

the wavelength, on the vibrational number �  is also investigated; it is shown that the 

attenuation of the wave at lower values of the Womersley vibrational parameter is 

practically equal to zero, and at its larger values, asymptotically approaches unity [3-12]. 

The presented simplified model is suitable for determining the propagation velocity of a 

pulse wave and pulse damping. However, it is unacceptable to determine the hydraulic 

resistance in an elastic pipe since, in this case, the impedance /
p Q
x

�	 
�� ��� �
 does not depend 

on the coefficient of elasticity of the wall. 
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