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Abstract. A nonstationary strain of elastic cylindrical shell filled with an ideal compressible fluid under the action of a 
plane stepwise compression wave propagating in an external elastic medium is investigated. It is assumed that the shell is 
infinite, and the front of the incident wave is parallel to its axis. An expansion in a Fourier series in terms of natural 
vibration modes and finite differences in the radial coordinate in time is used to solve the problem. The asymptotic 
behavior of excitations as  (t – is time) is investigated similarly to. The approach makes it possible to obtain 
reliable and complete information about the basic physical patterns of the nonstationary strain of a cylindrical shell filled 
with fluid over the entire impact range of an elastic wave on the system. 

INTRODUCTION 

Theoretical estimates of the dynamics of underground structures are based on solutions to the problems of elastic 
wave diffraction. Among these classes of problems, the most difficult is a nonstationary formulation. The study of 
Baron and Parnes [1] initiated the analysis of nonstationary problems of elastic wave diffraction by cavities 
(supported and unsupported ones). To solve the problems, the required functions were expanded in a Fourier series 
in the circumferential coordinate; the Laplace transform in time was used. The inverse transform was conducted for 
zero and second forms at 0p  ( p is the transform parameter). Thus, a solution was obtained that describes the 
stress state as t . In [2], to solve this problem, a numerical inversion of the Laplace transform was used by the 
expansion of the original in series in Jacobi polynomials. Diffraction by rigid inclusions was considered in [3, 4], 
where the problems were reduced to the numerical solution of the Volterra integral equation of the second kind 
concerning the displacement potentials. To solve nonstationary problems of the medium, V.D. Kubenko has 
developed a method based on using the integral Laplace transform in time and its inversion using the Volterra 
equations. Some aspects of nonstationary diffraction of plane expansion and shear waves were considered in[6-8]. 
Along with this, in [9-12], the dynamic behavior and wave phenomena in various systems were investigated by the 
finite element method (FEM), taking into account the features of the structures. 

Thus, most of the results of nonstationary problems were obtained for rigid inclusions, only at initial or large 
values of time, which does not allow obtaining complete information over the entire time interval. It should be noted 
that L.I. Slepyan presented various formulations of nonstationary problems and original approaches for their 
solution in his monograph [13]. 

The following approach to solving nonstationary wave diffraction problems by deformable inclusions was 
proposed in [14]. The motion of the shell and the elastic medium is expanded in a Fourier series in the angular 
coordinate. The resulting system of one-dimensional equations is solved numerically using an explicit finite-
difference scheme. Zero derivatives in these equations are replaced by a three-point approximation, and the time 
step is chosen equal to the steps along the radial coordinate, which minimizes the numerical variance. In parallel 
with this, asymptotic solutions were constructed for each harmonic as t . The proposed comprehensive 

t

The Third International Scientific Conference Construction Mechanics, Hydraulics and Water Resources Engineering (CONMECHYDRO 2021 AS)
AIP Conf. Proc. 2612, 040009-1–040009-6; https://doi.org/10.1063/5.0113327

Published by AIP Publishing. 978-0-7354-4337-2/$30.00

040009-1

D
ow

nloaded from
 http://pubs.aip.org/aip/acp/article-pdf/doi/10.1063/5.0113327/16781134/040009_1_online.pdf



approach allows one to obtain reliable and complete information about the basic physical patterns of the 
nonstationary strain of a cylindrical shell. 

Based on this approach, an impact of a plane acoustic pressure wave on a cylindrical shell filled with fluid was 
considered in [15]. Similar nonstationary problems of diffraction of plane elastic compression and shear waves were 
studied in [16-18]. 

The proposed study investigates the nonstationary strain of a cylindrical shell filled with fluid under the impact 
of a plane stepwise compression wave propagating in an external elastic medium. 

Problem statement 

Consider the impact of a stepwise plane compression wave on an infinitely long elastic shell filled with an ideal 
compressible fluid and surrounded by an elastic medium. The wave front is considered parallel to the shell axis, 
thereby reducing the problem to a flat formulation. 

In the polar coordinate system ,r  related to the cylinder, the stresses and displacements in the incident wave 
touching the frontal point with coordinates r R , 0  at time point 0t are given in the following form 
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where 

oH  is the Heaviside function, is the stress at the front of the wave propagating in the direction z , R  is the 

shell radius, 1, 1  are the density and Poisson's ratio of the medium, respectively, 1c is the velocity of the expansion 

wave. 
The motion of an elastic medium is described by wave equations for scalar  and vector potentials, the 

flow of a fluid is described by a wave equation for the velocity potential 0  (the dots on top denote time 
derivatives). 
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where zс is the shear wave velocity, 0с is the speed of sound in fluid. 
The shell motion is described by linear equations of the classical Kirchhoff - Love theory 
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where w,   are the displacements of the shell in tangential  and radial r  directions, ,h are the thickness and 

density of the shell material, respectively, c is the speed of sound in a thin plate, P is the pressure in the internal 
medium caused by the shell motion, o is the density of a fluid. 

It is required to determine the stresses and displacements in the shells under zero initial conditions and the 
following boundary conditions on r R : 
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Potentials  and  should, in addition, be zero outside the expanding region bounded by the front of 

excitations. On the surface of the shell )( Rr , the condition of equality of the radial velocities of the shell and fluid 
is satisfied 
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SOLUTION TO THE PROBLEM 

To solve the problem, the Fourier series expansion by angle  is used. The equations of motion (1), (2) for the 
m-th mode of vibration (m = 0, 1, 2,….) take the following form 
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The Laplace transform in time with parameter p  is applied to the systems of equations (the transformed values 

are indicated by the upper subscript L ). A solution in images is obtained in the following sequence [16]: the 
solution of equations (6), (7) is found taking into account the radiation conditions and boundary conditions (3), (4); 
the total stresses in the external medium and the pressure in fluid acting on the shell are calculated. The solution to 
the problem and the analysis of the results obtained in the absence of fluid are presented in [16,17]. 

To calculate the pressure in the fluid, equation (7) is solved taking into account (4) and the boundedness of the 
solution on 0r ; then, we obtain 
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where 
mI  are the modified Bessel functions of the first kind. 

Then, the expression for the pressure in the fluid acting on the shell takes the following form 
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Thus, we obtain the exact solution of the problem in images by adding the pressure of fluid (8) to the total radial 

stress in the medium acting on the shell and solving the system of equations (5) with respect to L
m

L
mw , . 

We search the asymptotics of the solution for large values of time from the beginning of the process. As 0p
in the expressions obtained, we determine the asymptotics t of the Fourier coefficients for each harmonic. For 

2m , the asymptotics gives zero values of these coefficients: in the course of time, the first three forms 
2,1,0m  turn out to be the determinant forms.  

The asymptotics of the solution is given as: 
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Here ц  is the chain stress in the shell, calculated by the following formula 
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From (9), it follows that the first form describes the motion of the shell as a solid unit. Zero and second forms 

determine the strains and stresses in the shell. The fluid contributes to zero forms only, increasing the radial fluid of 
the shell over 0 . 

NUMERICAL SOLUTION 

To reveal the error of asymptotic estimates over a finite time interval and to determine the coefficient of 
dynamics and the limits of applicability of these estimates in specific cases with real parameters of the shell and 
media, a numerical solution was conducted. 

The motion of an elastic medium is written by the dynamic equations of the theory of elasticity in displacements. 
After expansion in a Fourier series in the angular coordinate, the equations are rewritten in finite-difference form. 
An explicit "cross" scheme is used. The numerical variance appearing in the area of frontal discontinuities due to 
space and time discretization is minimized by the appropriate approximation of equations and boundary conditions 
[14] and by the optimal choice of the parameters of the difference grid. A detailed description of this algorithm for 
an elastic medium is given in [17].  

In calculations in the domain )1(r  in the equation for 0 , a three-point approximation of the term with zero 

derivative is applied ,24/,/ 1,0,01,0
22

00
22 n

j
n

j
n

jrmjhrntrm  where n
j,0  is the value of 

040009-4

D
ow

nloaded from
 http://pubs.aip.org/aip/acp/article-pdf/doi/10.1063/5.0113327/16781134/040009_1_online.pdf



the function 0  at grid nodes, 0, h  are the grid steps in time and space. The boundary condition on the surface and 
the fluid pressure is approximated by one-sided differences. At the point 0r  where the wave equation has a 
singularity, the potential 0  must satisfy the following conditions [15]. 
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Calculations have shown that at Rh 05.01 ( 1h  is the step of the difference grid along the radial coordinate in an 

elastic medium), a completely satisfactory accuracy is achieved; with a further decrease in 1h , the change in the 
results is observed in the third significant digit. When calculating the sums of the Fourier series, 11 terms were 
retained 10,.....0m ; an increase in the number of forms did not lead to a change in the results by more than 3%. 
In calculations Rc ,, 11  were taken as the unit of measurement. 

The figure shows the results for 1.0,05.0 01 hRh , and the following parameters of the shell and 
medium 7.0,4.0,25.0,04.0,9.2,23 001 chE . The numbers in the figures 
correspond to the maximum values taken by the sought for values for the considered time. Dashed lines correspond 
to asymptotics (9). 

The presence of fluid reduces zero form of displacement, and its effect on other forms is negligible. The internal 
medium increases the inertia of the system, as a result of which the level of w in the shell with fluid is lower than 
without fluid. As in the case 000c , the shell velocity becomes equal with time to the particle velocity in the 
incident wave (Fig.1a). 

Analysis of oscillograms of the chain stresses shows that the maximum compressive stress occurs at the side 
point )2/( . The difference between the numerical solution and the asymptotics for 4t is insignificant. For 
comparison, the results for the case 000c  are shown. The internal medium significantly reduces the maximum 
value of ц  at the frontal point 0. Its decrease depends on 2

00c  and increases with an increase in the modulus of 
volumetric compression of the fluid. At the shaded point , the first excitations are caused by elastic waves 

cRt /1 ; the basic excitations appear after the acoustic wave 02 /2 cRt  arrival. At 2tt , the amplitudes of 
the chain stresses sharply decrease and tend to the asymptotic value (9) (Fig.1b). 
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(a) (b) 

FIGURE 1. a) oscillograms of www ,, 20 , b) oscillograms of chain stresses. 
__________  numerical solution, ---------------- asymptotic solution (9), ___________  

0 0 0c  
 

CONCLUSION 

The results obtained allow us to draw the following conclusions. 
1. For sufficiently large time values, the strains and chain stresses in the shell are determined by zero and second 

forms. The fluid contributes to zero modes of vibration only, increasing the radial fluid of the shell by 0 . 
2. The developed difference scheme that minimises the numerical variance allows us to accurately describe 

frontal discontinuities. Comparison of two solutions shows that at 1/6 cRt , the asymptotic solution completely 
describes the stress-strain state of the shell. 
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