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Abstract. Wave processes in an elastic half-space covered with an elastic 

layer and (or) a thin elastic plate are considered in the paper. External load 

moves along the free surface. In the stationary statement, the waveguide 

properties of the system are determined. The multiple roots of the 

dispersion equations are revealed and the critical load velocities, leading to 

the initiation of resonant processes, are determined. In the case when the 

load moves with the velocity of the Rayleigh wave, additional resonances 

determined by the structure can be realized in the structure under 

consideration. It is revealed that Rayleigh resonance exists for long waves 

only. Numerical solutions are obtained that make it possible to trace the 

development of resonant excitations. The models of simple structures that 

have dispersive properties in the medium wave zone are analyzed, such as 

a thin plate on an elastic base; a model with an attached inertial medium. 

Analytical solutions have been obtained for these models. Computer 

simulations conducted simultaneously allow us to analyze the quantitative 

features of process throughout the entire time period of the load effect. The 

numerical and asymptotic solutions are compared.  

1 Introduction  

It is known, the consideration of resonant waves in structurally inhomogeneous rigid bodies 

has been initiated in [1, 2], where a plane statement was considered, while the dispersion 

properties of such structures and the existence of critical velocities have been studied earlier 

in [3]. In [4], the same problem has been solved for the case of cylindrical symmetry. 

Note that the study of resonance phenomena in the case of homogeneous bodies was 

carried out much earlier. First of all, let us point out the pioneer study [5], where the plane 

problem was solved for a free half-space and a surface load moving with the Rayleigh 

velocity. It was shown that, firstly, in this case the stationary limit of the solution is absent; 

secondly, the particle velocities and the stresses near the surface increase linearly. Then 

various aspects of resonant waves for plates and cylindrical shells interacting with acoustic 

media have been studied [6-10]. Special points on the dispersion curves in the case of a 
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hollow cylinder were considered in [6–9], asymptotic and computer solutions of bending 

resonance waves were obtained in [11, 12] for various types of moving loads. 

    It is important to note that the main contribution to the theory of resonant waves in 

rigid bodies and structures belongs to L. I. Slepian (see, for example, [9, 10]). An effective 

analytical tool for studying the resonant processes turned out to be the method, developed 

by him, of inverting the Laplace-Fourier double images in the vicinity of a moving wave 

),,( timeistvelocitywavetheiscctx  . This approach allowed us to obtain asymptotic 

solutions of processes (for large values of time) in a closed form. On the basis of this 

method, a number of problems, including practical applications, have been investigated in 

[3, 4, 6, 9, 11, 12]. Numerous aspects of problems with moving loads that do not consider 

the resonant waves can be found, for example, in [13–16, 19–21] (a detailed review of 

publications in [15] should be especially noted), but we will not discuss it here.  

Despite the fact that processes with moving loads have been studied in many sources, 

the problem posed in the title of this paper, which has obvious theoretical and practical 

significance, requires further analysis. Until now, it was unclear what type of singular 

points on the dispersion curves and how many of them appear in the case of different 

structures, what common and distinctive features have the Rayleigh and medium wave 

resonance processes? Which of them is more dangerous from the point of view of the 

response of the construction under consideration? 

These and other issues are addressed in this paper. 

2 Method  

Consider a dynamic problem for the plane system: thin plate - thick layer - halfspace. On 

the external surface )0( y  beginning at time 0t , normal surface stresses of a given 

magnitude Q  move with constant velocity V  along the right and left directions of axes x . 

 
Fig. 1. The considered system: thin plate-layer-halfspace 

In figure 1, the system geometry is shown and the following significations are used: H  

is the Heaviside step function, numbers 0, 1, 2 refer to the plate, layer and halfspace, 

respectively; oc  is the velocity of longitudinal waves in the plate, )2,1,0(  jj  are 

densities, )1,0( jh j  are thicknesses, subindices l  and s  related to velocities of 

longitudinal and shear waves, respectively: jlc  and )2,1( jc jl . 

The theory of dynamic elasticity describes the motion of the layer 1:0 1  jhy ) and 

halfspace )2:( 1  jhy  as follows:  
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while the classic Bernoulli equation is used for plate dynamic bending:  

,/)()12/(:0 00
)(2

0
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0 hpRPwhcwy jv

xxxx       (2) 

where )|x|(  VtQHP  is a moving step load, R  is the normal reaction of the layer to the 

plate motion: 
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All the components of the composition are connected by a rigid contact excluding 

longitudinal connection between the plate and layer (or the halfspace in the reduced system: 

plate-halfspace) which are assumed to be absent. So the following relations are proved: 
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Note that the load source is manifested here somewhat conditionally, it is convenient for 

analytical and numerical procedures, there is no problem to use the sources appeared in 

practical problems. For example external pressure waves caused by the air blast in a far 

field; the action of a plane landing onto a strip; internal sources related to earthquake or 

underground explosions (then the superposition method of wave theory can be used to 

calculate the parameters of the moving surface loading). 

In the steady-state formulation, the solution of the problem (1) – (4) is found as a 

superposition of Fourier harmonics,  yctxiq  )(exp , propagating along the x -axis and 

exponentially decaying at y . Factor   is calculated from Fourier-transforms of 

original equations for the halfspace. Then, by using the boundary conditions, the dispersion 

equation connecting the phase velocity, с , and the wave number, q , is obtained. This 

equation is transcendental, it has a cumbersome structure, and its formal expression only is 

presented below: 

0),,,.,,,,;,( 222121100 pccpcchchcqL slll     (5)
 

In the general case, the analytical solution of Eq. (5) it is not possible to obtain, but 

there is no problem its computer solving. The some complexity, however, is to conduct 

(more or less) analysis of its solutions  dependences );(  qcc  where   is the set of 

nine parameters signed in (5). Using some of them as measurement units, the set of free 

parameters can be significantly reduced. Below calculation results are presented in the way 

to describe common dispersion features with the minimal varying of parameters. 
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3 Results 

The aim of analysis of Eqn. (5) is to find special points and examine the behavior of 

dispersion curves in their vicinities. 

3.1 Thin plate-halfspace 

First, consider a system: thin plate-halfspace, which is the simplest (single-mode) special 

case of the considered system. Formally, to obtain the mathematical formulation of the 

dynamics of this reduced system, there is enough to equating parameters of the layer and 

the halfspace. We introduce the following notation: 

212121 ,,   csslll cccccc
. Then Eqn. (5) is written as follows: 

2222224222
0

22
0 /114)/2(,0)12/(1 ssRRs cccccLLccqcccq   (6)

 

where ohandс ,1  are taken as measurement units. Here 0RL  is the Rayleigh equation 

for a free halfspace (its single real root is Rcc  ), and. Eqn. (6) has a single mode 

)(qcc  , which is real if scc  . 

If 0q , then Rcc  : a plate of finite rigidity and mass does not influence the long 

wave dispersion (more accurately: the infinitely long wave dispersion). The asymptotic 

behavior of phase velocity c obtained from (6) is 

 
  22222222
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222
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   (7) 

If q is relatively small, c linearly decreases with q increasing. The decreasing rate in c 

strongly depends on the plate mass and, vice versa, is independent of the plate rigidity. 

With further increase in q , the decay of )(qc  within a middle spectrum stops, the 

dispersion curve reaches minimum ),( ** ccqq mm  , and after that it monotonically rises 

up to scc   (remind that real values of c are only if  sc c
). 

 

Fig.2. Dispersion curves for system: plate-halfspace, (a) “heavy” plate, c0 = 2; (b) “light” plate, c0 = 

0.5. 
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Black circles in figure 2 are special points (minima) in the middle wave spectrum, while 

the asterisk is the special point of the Rayleigh surface resonance. Asymptote (7) coincides 

with a linear part of all curves. Note that here and in the subsequent examples, the Poisson 

ratios are the same: 25,021  , then  3 0.5774  1,2 .ks klc c k  
 

It can be shown that points of the minimum are inside the upper domains between two 

straight lines: asymptote (7) and the plate bending mode 0 12 .c c hq
 Coordinates mm cq ,  

can be obtained from the following formulas:                       

0
25

00 /2,0)(8/31)/( ccqcLcccp mmmRmm     (8) 

So, in the considered case, two critical velocities exist: Rcr cV   in a long wave 

spectrum 
 0  q 

with a low frequency 
 0

, and mcr cV  , within a medium wave 

spectrum )( mqq  .  

If it is possible to approximate the dispersion curve in the vicinity mq  by dependence 

 m m

n
c c q q  

,   is constant, then the larger index n , the less the dispersion in the 

vicinity mq
, the wider becomes the wavelength spectrum that shapes the resonance 

disturbances and the more intense is their growth in time. As it is shown in [10], with the 

existing the above-mentioned approximation, the resonance growth rate is asymptotically 

proportional to 
   

1
 

n n
t t




, while number )2( nn is the first natural number for 

which 0 nn qc . Therefore, in the case of a light and pliable plate (i. e. small 00 cand ) 

resonance regimes in the medium wave spectrum are to be suspected as more intensive. On 

the other hand, with increase in 0c  the value of mc  approaches Rc , while mq  is removed 

into the long wave domain. This fact shows the possibility of a strong superposition of 

surface waves in the halfspace )0,(  qcV Rcr  and bending waves in the plate 

),( mmcr qqcV  , which will considerably strengthen disturbances if  V  is within 

interval ),( Rm cc . 

3.2 The system thin plate-thick layer-halfspace 

Here as distinct from the previous case infinite number exist of the dispersion equation 

roots (modes) corresponding free wave modes propagating in a layer of finite thickness. If 

0q , then as in the previous case 2Rcc  , the Rayleigh velocity in the halfspace. The 

first (lower) mode has real roots, whereas the higher modes can be real or complex 

depending on the relation between system parameters. A set of special points can exist in 

these modes.  

Longwave )0( q  asymptote of the dispersion equation (5) is obtained as the 

following: 

                   





 ),;(1 21111

24
02

4
2 sslRs cccФhccqLcL    (9)
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where Ф is a finite function. The measurement units are: lс22, and 0h . Remind, we 

assume 25,0210  , then 577.0/ 1 ccs  and 92.0Rc . Then only five free 

lchc 11100 ,,,,  l.  

As in the previous case, a linear asymptote c(q) is proved by Eq. (9). Here the 

Rayleigh velocity is also critical for relatively long waves and the plate stiffness does not 

influence the longwave asymptote. 

The main distinction that brings the layer existing is that velocity )(qc  can change 

drastically (decrease or increase) with growth in q. Obtaining analytical estimations of 

special points in the middle spectrum turns out problematic, but in this case, there is not 

problematic for the numerical solutions of the original dispersion equation shown as the 

formal expression in (5). 

Below, in figure 3a,b first modes are depicted calculated for a set of structure 

parameters, while four first modes can be observed in figure 3c. For a relatively rigid and 

heavy layer ),( 2121 ll cc  , the first mode can receive points of maximum and 

minimum in the medium wave spectrum: see examples in figures 4 a,b. 
 

 

Fig. 3. Dispersion curves in the system: plate-layer-halfspace. 

In the example for a lighter )( 21  and more pliable layer ll cc 21 

curves of the first and second modes have maximum and minimum, while the third mode 

they has an inflection point with a tangent parallel to the axis of q . The presence of diverse 

special points in the narrow spectrum of different modes testifies to the possibility 

superposing of different oscillation forms with close wavelengths in a narrow range of 

critical velocities. 

3.3 Non-steady-state problem. Development of resonant waves 

The diversity of special points in a wide spectrum revealed above proves the development 

of a set of resonant disturbances if the surface load moves with critical velocities VCR = 

cm and VCR = cR. Such processes were examined on the basis of direct numerical 

modeling of the problem considered. With this aim, an explicit finite-difference scheme is 

applied with using the special method of the mesh dispersion minimization initially 

introduced in [17] and developed in [18]. The method enables long- and short-wave 

components to be calculated with the same accuracy with a static difference mesh [19, 20, 

21]. 

In Figure 4, an initial stage of resonant wave formation in the system plate-halfspace is 

shown for two critical velocities of the moving step load: RcV   and mcV  and 
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RCR cV  . The depicted curves are rising values of normalized normal reaction R/Q in the 

mentioned cross-sections on the surface (y = 0). Measurement units are 000 ,, ch . One can 

see a clear distinction between these two cases: (a) a strong rise and a fixed frequency of 

the flexural resonance at mcV  , while a weak rise and decreasing frequency are detected 

with time if RcV  . Such peculiarities can partially be forecasted by the analysis of 

dispersion roots in vicinities of special points, where noticeable flattening of the dispersion 

curve in the vicinity of the minimum point ),( mm cq is detected, which means to a decrease 

in the level of dispersion and, consequently, the increase in the growth rate of resonant 

perturbations. On the other hand, a relatively strong dispersion is revealed in the point 

corresponding to the Rayleigh resonance ),0( Rccq  . Such estimations can have a local 

character without claiming to be a kind of the generality: in the beginning of the wave 

process, it is problematically to establish the common characteristics of propagation of non-

steady-state perturbations. In the next Section, we have tried to build analytical solutions 

allowing highlighting the physical consequences of interest. 

 

 

Fig. 4. Formation of resonant process in the system plate-halfspace: 2 = 0.4, c2l =1. Curves 1, 2, 3, 4 

correspond to cross-sections x= 0, 10, 20, 30. (a): V = cm = 0.48,  (b): V = cR= 0.53. 

The similar process is detected in the system plate-layer-halfspace. In figure 5 the 

results are shown calculated in the case of a relatively rigid and heavy halfspace. It can be 

seen, that in the case of the bending resonance (V=cm), the growth of perturbations is more 

pronounced. 

 
Fig.5. Formation of resonant process in the system plate-plate-halfspace: h1= 

5,c1l2 = 0.4, c2l = 0.4. Curves 1, 2, 3, 4 correspond to cross-

sections x= 0, 10, 20, 30. (a): V = cm = 0.48,  (b): V = cR= 0.53. 
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3.4 Simplified models 

Unfortunately, obtaining analytical solutions for resonant waves in the considered systems is 

problematical. However, such solutions can be successively found on the basis of the well-

known approach in which the original complex structure is changed by a simplified structure 

possessing the closest spectral properties in a detailed spectral band. This approach is 

notably applicable in the considered above case of flexural resonances where a narrow 

spectrum surrounding a special point is of interest. With this aim, we have used below two 

simple models: (a) thin plate upon an elastic foundation and (b) the same system 

supplemented with distributed inertial masses connected with the plate by inertionless elastic 

springs (it is clear that there are no Rayleigh points in these models). 

The measurement units for these two models are parameters of the plate: ,,, ch other 

parameters of systems are indicated in figure 6, the foundation rigidity g - model (a) (the 

single free parameter), and three free parameters in the model (b): g ; G  - the rigidity of 

links connected the plate with the amortized medium, and its mass M . 

 

Fig. 6. Considered simplified systems. 

The dimensionless equations describing dynamics of simplified models subjected to 

action of the travelling load are  

                  
oWwGMW

WwGgwRRPwwb

wgRRPwwa

IV
y

IV
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
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
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),(,)12/1()(

;,)12/1()(

)(

0
)(





   (10) 

where )|x|(  VtQHP is the external travelling load, R is (a) the elastic reaction of the 

foundation, (b) the total reaction of the foundation and of the amortized medium.  

Dispersion equations (5) for these models are disclosed as follows: 

,012/),,()( 224  gcqqgcqLa       (11)
 

In the case of system (a), a single special point - minimum is found: 

                
   012/),,,,()( 222224  GcMqGGgcqqMGgcqLb  (12) 

while in model (b), special numerical procedures to solving Eq. (11, b) are required to find 

the coordinates of special points. As it was numerically obtained, the model (b) can have 

from one (minimum) to three (minimum, maximum and inflection) such points, depending 

on structure parameters.  

By variations of free parameters in Eq. (11) we choose such of them that ensure the 

closest proximity of the dispersion curves of the original and the simplified model within a 

given spectral band. Such a procedure can be completed, for example, by the least square 

method. It is clear that the model (b) has substantially more possibilities than the model (a) 

to coincide the dispersion patterns in the original model and simplified those. Nevertheless, 

we consider just the simplest model (a) below with the aim to build an analytic solution for 

the explored problem. 
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In figure 7, dispersion curves are depicted calculated from (11, a) for some values of 

rigidity g. The special points of minimums can be indicated. 

 

Fig.7. Dispersion curves for the model (a). 

3.5 Asymptote  of the flexural resonant process 

Asymptotic solutions we have built basing on the Slepyan approach [9], in which a double 

Laplace-Fourier transform is reduced to the Laplace transform at the ray tVx cr  with 

further asymptotic expression of the double Laplace-Fourier images in the vicinity 

mqq  (the wave number q  is the Fourier transform parameter) and for a great values of 

time:  t   (that correspond to asymptotic condition  0s   in the Laplace-Fourier 

images, where s is the Laplace transform parameter). After these procedures, the precise 

reversion of the joint Laplace-Fourier transform is completed.  

Below we omit rather cumbersome mathematical calculations and show the final 

formulas of the asymptotic solution to the problem (10, a):  
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(13) 

Here   is the stationary phase in the travelling wave. In the vicinity of this phase, wave 

pattern is marked by the growth of resonant perturbations proportional to t ; the 

oscillating process is described by the sum of envelopes 1F  and 2F  with the sinusoidal 

saturation with the carrier resonant frequency
 m m mc q 

. Integrals 1F  and 2F  have the 

following analytical expressions: 
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where C(…) and S(…) are the Fresnel integrals. The graph expression of 1F  and 2F  can be 

seen in figure 8. 

 

Fig.8. Envelopes of resonant waves. 
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