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Abstract. The paper provides a detailed analysis of the methods for calculating the thin-

walled structure stability under static and dynamic loads, and the results of well-known studies 

related to assessing the stability of thin-walled structures. The paper gives a methodology for 

assessing the thin-walled structure stability and the analysis of stability loss of rectangular 

plates beyond the elasticity of the material. The stability loss of rectangular plates beyond the 

elastic limit of the material is investigated in the paper. A formula is proposed for determining 

the longitudinal forces in a plate under a state of infinitely small bending. An analytical 

formula is given to assess stability for the case of a hinged supported rectangular plate 

compressed in two directions beyond the elastic limit at various widths (b)-thickness (h) ratios 

of the plate. The proposed diagram of the plate material strain is in good agreement with the 

Berlin – Dahlem experimental diagram. It was stated that under linear hardening of the 

material, a square plate of flexibility     𝑏/ℎ ≥ 20, loses its stability within the yield strength. 

Beyond the yield strength, flexibility 𝑏/ℎ < 5 corresponds to stability loss. 

1.  Introduction 

Theoretical and experimental studies of thin-walled structure stability are investigated in detail in [1–

5]. The behavior after convexity of rectangular orthotropic multilayer composite plates with initial 

defects under shear stress in a plane was studied in [6]. Using form functions of the Timoshenko type 

for the initial bifurcation analysis of stability loss and subsequent studies of the post-slip type, 

analytical solutions were obtained in closed form for the stability loss loads and the variable states 

after buckling. Moreover, the considered plates were assumed to be infinitely long in the longitudinal 

direction. 

The closed analytical expressions for calculating the effective width of thin plates under 

inhomogeneous plane loading were presented in [7]. It was assumed that the longitudinal edges are the 

straight lines and can move freely in the plate plane. The proposed expressions were very useful for 

calculating the limiting state of thin I-section beam columns or channel sections under general types of 

load. They allow designers to calculate the effective section width using simple formulas that are 

suitable for manual calculation and avoid the costs and efforts that may be required for any numerical 

non-linear analysis. 

The bending behavior of a biaxially compressed orthotropic double-layer graphene sheet (DLGS) 

embedded in an elastic medium was studied based on the theory of nonlocal elasticity. DLGS is 
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modeled as a nonlocal double-layer plate, which contains the effect of small scale and van der Waals 

interaction forces. The van der Waals interaction between graphene layers is modeled as a set of linear 

springs using the Lennard-Jones potential model. Using the principle of virtual work, the equilibrium 

equations are derived on the basis of the theory of shear strains of the first order and the Eringen 

nonlocal differential defining relations [8].  

The researchers in [9] described a deep study of mathematical and computational programs in 

developing an effective design methodology based on modeling using the finite element method. This 

methodology suits the applications in the practical construction of structural components used in the 

manufacturing of complex lightweight RTM-type composites and covers thick and thin shell-type 

composites. 

An analysis of the stability loss of orthotropic nanoplates, such as graphene, using the theory of 

refined plates with two variables and nonlocal small-scale effects was presented in [10]. The theory of 

a refined plate with two variables takes into account the effects of transverse shear and the parabolic 

distribution of transverse shear strain along the plate thickness, so there is no need to use correction 

coefficients of shear. Nonlocal constitutive equations of motion for monolayer graphene are derived 

from the principle of virtual displacements. A closed-shape solution for bending loads on a simply 

supported rectangular orthotropic nanoplate subjected to plane loading was obtained using the Navier 

method. The numerical results obtained with the present theory are compared with the first-order shear 

strain theory for various correction coefficients of shear. It was proved that the dimensionless loss of 

stability of an orthotropic nanoplate is always less than that of an isotropic nanoplate. 

The study in [11] is related to modeling and analysis for a dense safety valve, thus successfully 

applying a systematic method for the design and analysis of similar valves. The aim of the work is to 

solve two important problems: one concerns the positions of the control valve, influenced by the flow 

force, and the other concerns the opening of the safety valve controlled by a thin annular plate. 

Computational Fluid Dynamics method (CFD) is used to represent the flow strength. Using a series of 

experiments, the dependence of flow rate on pressure drop shows the rationality of CFD results. To 

obtain the opening of the safety valve with higher accuracy, the theory of large deflection of thin 

plates is applied. 

Various influential factors, such as element size, defining relations, second-order structure effects, 

and membrane effects in the loss of stability region have been discussed to achieve better validation 

using experimental data. As the load increases, plastic strain in the U-shaped rib near the end 

stiffening rib gradually increases under the influence of initial defects and stress concentration [12]. 

The limit bending strength of bisymmetric and monosymmetric I-beams subjected to local bending 

in the bridges was investigated using nonlinear finite element analysis, including post-bending 

behavior. Plate trusses made of high strength steel (HPS) and ordinary steel were modeled three-

dimensionally with thin shell elements, and limit strength analysis was performed using universal non-

linear methods provided by commercially developed finite element analysis (FEA), software 

ABAQUS. Elastic-plastic strain hardening was considered as the fundamental correlation for both 

HPS and ordinary steel, and the initial drawbacks were taken into account, and the residual stresses 

were superimposed on the hypothetical built-up areas [13].  

In [14], a theoretical solution to the plane contact problem of the theory of elasticity is presented, 

based on the method for determining the convergence of elastic bodies using an elastic model of half-

space; on its basis the contact strain (change in diameter) of circular cylinders with parallel axes was 

determined. The possibility of obtaining an exact solution to the problem using an elastic half-spatial 

model based on the Hertz theory was shown for the first time. It was shown that the well-known 

Kowalski solution for contact strain of circular cylinders with parallel axes is a rough approximation 

of a more accurate solution to the problem. It was established that the result is in good agreement with 

the experimental data of Dinnik. 

In [15], the long-term stability of plates and shells of polymer materials was considered taking into 

account their economic properties. The problems of long-term stability of plates and shells made of 

polymer materials were discussed in a review report presented by Yu.N.Rabotnov. 
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Along with this, stability assessment, dynamic behavior, and wave phenomena in various thin-

walled structures were studied in [16–22]. These are just some of the works dedicated to the subject of 

this paper. 

The above review of published works shows that the stability assessment under static and dynamic 

loads is differently conducted in different studies, and each theory or method used has its advantages 

and disadvantages. 

2.  Methods 

The rational use of plates in various fields of construction and mechanical engineering requires the 

development of an updated methodology for calculating the stability of plates taking into account the 

peculiarities of their mechanical properties. 

As is known, at the bifurcation of plane equilibrium state of a compressed plate to a bending state 

its stress-strain state changes substantially. 

Let us present the geometrical relations [1] connecting strains with displacements in the case when 

the surface of the plate is curved downward 
2 2 2

2 2
; ; 2x y xy

w w w

x y x y

  
  

   

  
             (1) 

where yx   ,
 are the bending strain; xy

is torsion strain; 
 w x y,

 is deflection function. 

According to the theory of small elastic-plastic strains [2], stresses xyyx   ;;
are related to 

strains by the following relations 

4 1 4 1
;
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x x y y y xz z       

   
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 (2) 
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The plate material is assumed to be incompressible and ,00   0 z  

We believe that the infinitely small bending of a rectangular plate occurs as a result of the 

bifurcation of its equilibrium state: in this case, the plate passes from a flat form of equilibrium to a 

bending one (figure 1, a). The secant module at which bifurcation occurs, we denote by 0
 , the point 

0M
on the diagram   corresponds to this module. There are three types of stresses and strains. 

Therefore, there are three formulas for the secant module  [3]: 
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  (4) 

These formulas show that in the upper half of the thickness of plate section, secant moduli, in 

comparison with the value of 
0 , decrease ( 0);z   
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Figure 1. Design scheme and diagram of the material strain. 

 

Consider the stress state of a rectangular plate, compressed in two directions. In this case, the 

condition is satisfied:  

  ; ; 0; 0x x y y z xyF F           (5) 

where ;x yF F are the compressive conditions in the directions Х and Y , respectively. 

In this case, the strains ; ;x y z   are nonzero, and the strains along the vertical axis z are found 

from the condition of the material incompressibility 0;x y z      x y z     . 

Since the stresses ,x y   are set, the value of the secant module i

i





   can be found. To do 

this, at the beginning we calculate 

2 2 2 2 2; 1 ;
y

i x x y y x x y y i x

x
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F
                   (6) 

Knowing the stress intensity, we determine the strain intensity i  based on the adopted diagram

ii  
, which allows us to establish the dependencies

 .ii  
 Next, we find the secant moduli 

yx  ,
using the formula  i i    . Using this formula, the strains are calculated when deriving 

the relations connecting the forces and moments with the strains, here we will proceed from the 

assumption that the strains lie beyond the limits of Hooke's law. 

The longitudinal forces in the plate, which is in the state of infinitely small bending, are determined 

by relations: 
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  (7) 

Considering that    0 04 0,5 3 ; 4 0,5 3x y x y x yF F         and neglecting in the formulas 

(7) the values of the second-order of smallness, we find: 
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We write expressions for infinitely small bending and torques 
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  (9) 

Equations (9) are reduced to a homogeneous equation with respect to the deflection function

 , ;w x y for this purpose, the equilibrium equation is used, in which the vertical load on the element 

is represented by the projections of compressive stresses ;x yF F on the axis z : 

  

22 2 2 2

2 2 2 2
2

yx
x y

MM H w w
F F h
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  (10) 

Introducing strain expressions (9) through the deflection function (1), we obtain the stability 

equation of a rectangular plate, compressed in two directions; beyond the elastic limits it can be 

written in a simpler form: 
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  (11) 

In the case of a hinged-supported rectangular plate compressed in two directions, beyond the elastic 

limits, the deflection function can be represented as the product of sines 

   1( , ) sin sinm

m x y
w x y C

a b

 
     (12) 

This function corresponds to the case when a rectangular plate with sides a  and b loses stability 

along one half-wave along the axis y, and along mhalf-waves along the axis x . 

The deflection function (12) satisfies the boundary conditions according to which the deflections 

and bending moments should vanish along the contour of the plate. 

Substituting the function (12) into (11) we obtain the stability equation for the hinged-supported 

plate, for the geometrical parameter of the plate b h ;  
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To construct the necessary graphs reflecting the plate stability, relations (13) are used. 
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A group of equations related to the parameter 1 2y xP P   and a group of equations related to 

the parameters 1 4y xP P    that connect the flexibility of the plate b hwith some critical points 

0M in the diagram ii  
are obtained. To each point 0M  taken on the diagram corresponds to the 

flexibility of the plate
b h

. 

Choosing such a point, we have the value of secant modulus ii  0  and the value of tangent 

modulus iik ddE 
. 

The load parameter 
,xF
which is in the denominator of the right-hand sides of the above equations 

is expressed in terms of the stress intensity
 i  by formula (6). 

Therefore, the quotient
,0 xi

F
 located on the right-hand sides of the stability equations (13) at 

 1; 0.5; 0.25; 0       is replaced by the following expression  

.
11 22

0

iii

i

xP 









 





   (14) 

3.  Results 

Repeated short-term operation of the equipment is used for step-by-step control of the supply by 

switch in on and off the pump electric motors. Non-uniform pump operation is characterized by the 

condition that the pump supply is equal to the corresponding water consumption at any time. 

Thus, for any point 0M in the compression diagram i i  , the right-hand side of each of these 

equations becomes a known number that determines the flexibility of the plate b h . 

The proposed compression diagram 

n

Tvr

ivr

Tvr

ivr





























is in good agreement with the 

experimental diagram obtained in classical experiments in Berlin-Dalem laboratory. Therefore, the 

numerical results obtained in the paper relating to the stability of a compressed hinged-supported 

rectangular plate can be considered quite reliable. 

Figures 2 and 3 show graphs of plate flexibility b hversus stress intensity i
and strain rate i for 

a square steel plate, the material of which is endowed with a linear hardening diagram. 
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Figure 3. Change in strain 

intensity depending on b\h 
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4.  Conclusions 

1. A material strain diagram was proposed which is in good agreement with the experimental 

Berlin – Dalem diagram. 

2. It was established that under linear hardening of the material, a square plate with flexibility 

20b h 
loses stability under compressive stresses slightly different from the yield strength of the 

material
221000 /T N sm 

. 

3. Under compressive stresses of about 
230000 Nm  and higher, and at plate flexibility of 

5b h 
 

the issues of stability of such plates should be considered according to the theory of thick plates. 

4. It was stated that under infinite bending of the compressed plate beyond the elastic limit, the 

secant modulus of its longitudinal fibers decreases (as in the reloading zone), and in the unloading 

zone, it moves along an infinitesimal small section which is tangent to the critical point in the 

compression diagram i i 
. In this case, the secant modulus in the reloading zone decreases, and in 

the unloading zone it increases. 
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