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Abstract. The propagation of a spherical wave in the soil is solved in an 
analytically inverse way for soils with more complex equations of state. 
The results are obtained to propagate a spherical shock wave in soil with a 
more complex equation of state for the shape change in the medium. The 
study shows that taking into account the nonlinear elastic shock waves of 
the annular stress leads to an increase compared to the elastic medium. 
Note that in using a complicated equation of state of the soil, a spherical 
shock wave propagates in the soil, behind the front of which, in the 
disturbance region, the medium is unloaded. 

1 Introduction 
A shock wave is an area of compression of a medium, which in the form of a spherical 
layer propagates at a supersonic speed in all directions from the source of its formation. 
Depending on the medium in which the shock wave propagates (in air, water or soil), it is 
respectively called an air shock wave, a shock wave in water, a seismic explosion wave in 
the ground. 

Distinguish between a shock wave of natural and anthropogenic origin. Natural waves 
include shock waves caused by volcanic eruptions, earthquakes, hurricanes, tornadoes, 
falling meteorites, etc. The anthropogenic shock waves are those that occur as a result of 
explosions of nuclear devices, chemical explosions, explosions at nuclear power facilities, 
explosions at oil refining and petrochemical industries, explosions of gas-air mixtures or 
mixtures of flammable liquids and gases with the air. Most of the destruction and damage 
to buildings and structures, equipment of industrial facilities, and damage to people, as a 
rule, is caused by the action of a shock wave. 

In [1-2], a methodology for three-dimensional reconstruction of the position and shape 
of the blast shock wave as a function of time was developed. A series of blasting tests is 
performed, during which the blasting process is displayed by several high-speed digital 
cameras scattered over a large area. High speed images are processed using the Schlieren 
method for shock wave imaging. Shock propagation is measured and corresponds to the 
Dewey equation. Analysis of the position and propagation of the shock wave makes it 
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possible to reveal asymmetries at the shock front due to the asymmetric explosion process. 
The methods developed here are shown to be useful tools that can be implemented to 
complement traditional point tools in current explosive research testing and provide 
improved explosion performance over traditional field testing methods. 

In [3-6], the propagation of a strong spherical shock wave in a dusty gas with or without 
self-gravity effects in the case of isothermal and adiabatic flows was investigated. It is 
assumed that the dusty gas is a mixture of fine solid particles and ideal gas. Analyzes show 
that after the effects of the gravitational field are turned on, the impact force unexpectedly 
increases, and noticeable differences in the distribution of flux variables are found. 
Increasing the time also increases the power of the blow. It is investigated that taking into 
account the isothermal flow increases the impact force and eliminates the singularity in the 
density distribution. 

In [7-11], nonlinear relations based on the laws of Winkler and Coulomb are proposed 
to describe the process of shear interaction between structures and soil. Their advantages 
and disadvantages are shown, as well as the suitability of the experimental results. And 
also, one-dimensional non-stationary wave problems for soil and structure are numerically 
solved using the method of characteristics and the method of finite differences. Analysis of 
the obtained numerical solutions shows a significant dependence of longitudinal stresses on 
wave processes in the soil, the dynamic stress state of the soil and the mechanical properties 
of the soil and the material of the structure. The results obtained are the basis for 
developing a new standard calculation of the strength of underground engineering 
structures under seismic impact. 

In works [12-15], studies were carried out to analyze the behavior of a high-rise 
structure with various kinematic effects, taking into account the real geometry, dissipative 
and nonlinear properties of the structure material. A generalized approach to the dynamic 
calculation of high-rise structures has been developed, frequency characteristics have been 
constructed at various points of the structure. It was found that the nonlinear properties of 
the material of structures appear when the impact of a spherical wave can cause significant 
deformations in the structure. This applies not only to the magnitude of the impact force but 
also to its frequency content. Suppose nonlinear elastic deformation of the material 
manifests itself in the structure. In that case, this leads to a decrease in the displacement 
amplitudes of the points and an increase in the oscillation period compared to a linear 
elastic structure with similar kinematic effects. 

In [16], the problem of the propagation of a spherical shock wave in an elastoplastic 
medium is solved analytically and numerically by the method of characteristics. The results 
show that taking into account the diagrams of nonlinear elastic impact leads to an increase 
in the circular stress wave as compared to the elastic medium. It turned out that the 
concentration of stresses on a spherical cavity is higher than on a cylindrical one. 

In [17-19], a variational statement, methods and algorithms for solving various dynamic 
problems for a viscoelastic system are given, taking into account the conditions of non-
reflection on the boundary of a finite base. The dynamic behavior of an inhomogeneous 
viscoelastic system under a short-term intense load on the foundation is investigated. A 
weak dependence of energy dissipation in a system with hereditary viscoelastic properties 
of a material on the frequency of natural vibrations is revealed and a dependence of the 
wave removal of energy on the main natural frequencies of the system vibrations. 

In [20-21], the propagation of a spherical wave in linear-elastic and viscoelastic media 
was investigated. Here, a new model and a new approach to the analytical solution of the 
problem have been developed to model viscoelastic damping. Wave propagation is 
achieved by cascading separate geometric and viscoelastic damping mechanisms. 
Comparison of the analytical model with the results of dynamic finite element modeling 
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shows that the method of cascading individual transfer functions is a suitable approach for 
wave propagation in viscoelastic media. 

In [22-23], the propagation of axisymmetric viscoelastic waves in extended multilayer 
cylindrical structures was investigated. The classical methods of mathematical physics are 
used to solve boundary value problems in a cylindrical coordinate system, the spatial 
Fourier transform, the method of complex amplitudes for the variable components of the 
displacement vector and the stress tensor. The low-frequency resonances of the cylindrical 
shell are investigated, and the physical regularities of the formation of the pitch of the 
sound of its fundamental tone are determined. 

Dynamic analysis and the results of engineering analysis on the nature of the operation 
of structures during strong earthquakes indicate that the rigidity of structures does not 
always remain constant. Therefore, the parameters of the current response of structures 
must be determined only with the help of nonlinear analysis, which allows developing more 
reasonable design and construction methods, increasing the efficiency of structures while 
maintaining the required level of reliability. However, the problem under consideration is 
three-dimensional and non-stationary; therefore, methods for calculating underground 
structures for dynamic effects due to the complexity of the physical and mechanical 
properties of the soil, the nature of seismic and seismic explosive effects, the shape and 
geometry of structures have not yet been developed enough. In this direction, a certain 
success has been achieved with an obstacle of various shapes within the framework of the 
linear theory of elasticity. Still, a limited number of works have been devoted to 
elastoplastic deformations. 

In this regard, in this work, several specific problems have been solved in relation to 
studying the interaction of waves with a spherical cavity in soils, taking into account their 
complex elastoplastic deformations. 

The main goal of this article is to study the one-dimensional and two-dimensional 
nonstationary problem of the dynamic theory of plasticity as applied to the calculation of 
the parameters of the medium in cases of propagation and deformation of waves from 
different surfaces, based on the deformation theory with more complex equations of state. 

This article aims to study the one-dimensional and two-dimensional nonstationary 
problem of the dynamic theory of plasticity as applied to the calculation of the parameters 
of the medium in cases of propagation and deformation of waves from various surfaces, 
based on the deformation theory with more complex equations of state.  

2 Methods 

In this work, the problem of the propagation of a spherical wave in the soil is solved in an 
analytically inverse way for soils with more complex equations of state. The complexity of 
the equations of state is based on the assumption that the shape change function (stress 
intensity) of the deformation theory [24-25], which is one of the equations of state of the 
medium, depends on the first invariants of the strain tensor, i.e. This function in the process 
of loading the soil (Fig.1), according to the experimental data [26], is represented as: 
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In formulas (2), the coefficients jjj cba ,,  are assumed to be known constant values. 

For the function )(  included in (1), we have the expression 

iiii  )()(,)()( 2121                    (3) 
 

  
Fig. 1. Change of the first and second invariants of the stress tensors i ,  and 
deformation 1,   

  

Fig. 1. Change of the first and second invariants of the stress tensors i ,  and deformation 1,   
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Fig. 2. Graph of the change in the shock wave in the ground ( )r R t  

In the process of solving the problem, it is assumed that when using 
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and (1), a spherical shock wave propagates in the soil (Fig.2), at the front of which the 

medium is instantly loaded in a nonlinear manner, followed by a linear irreversible 
unloading with Young's moduli E1 and E2. This assumption is confirmed by the solution 
and numerical calculations of the problem. For the analytical construction of the solution to 
the problem, the surface of the shock wave )(tRr  , as in (1), is given as a polynomial of 
the second degree with respect to time, and the load profile )(0 t  is determined from the 
solution of the problem. Then from the condition 
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taking into account the first equation (3), (4) and (1), all the parameters of the medium, 
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0u ) at the shock wave front, are obtained by the known quantities depending on time 
t  or coordinates r . In this case, to determine the deformation )(t at the shock front, 
instead of the first equation,  

 

),()(

,
)

27
8(

)
9
4()(

)()(
22

11
2

0

ttRu

tR
tt

t

rr
























     (6) 

 

5

E3S Web of Conferences 264, 02041 (2021)	 https://doi.org/10.1051/e3sconf/202126402041
CONMECHYDRO - 2021



we obtain a transcendental equation of the form, which is solved numerically using the 
standard procedure. 
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Let equation (7) have a solution 
 

)(t                                                               (8) 
 

If the equations of the shock wave surface 2/2
210 tRtRrr   are represented in 

the form )(rtt  , then the wave velocity is written relative to the coordinate and from (7), 
we find 
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Thus, by analogy with (6), at the front of a spherical shock wave, we have the following 
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In this case, in the region of perturbation, the equation 
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where    and   are unknown functions. 

Here is the function )(rQ , expressed by the formula  
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directly depends on the solution of the transcendental equation (1.7), represented in the 
form (1.9). To find the unknown functions   and   included in (1.12), substituting (1.12) 
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Where )(2 F  is the root of the equation with respect to ztatR  0)( . From (17), 

taking with considering (10), to determine the mass velocity ut
 and the radial component 

of the soil deformation  rr
, we obtain the expressions: 

8

E3S Web of Conferences 264, 02041 (2021)	 https://doi.org/10.1051/e3sconf/202126402041
CONMECHYDRO - 2021



Where )(1 zF  is the root of the equation ztaR  0  with respect to t . Denoting the 

right-hand side of (16) through functions )(z  and appropriately substituting (16) into 
(15), we obtain an expression for the desired function ).( 0tar  . Then, taking with 
considering (12), the solution of the spherical problem, in this case, is represented as: 

 



  

































 





























































1

10

2

10

0

0

0

0

0

0

0

0

0

0

2

0

202

10

0

0

1

10

0

0

)()(1))(())((

)()(
2

))(()))(((

)))((())(()(
2

))((

)()(1),(

12222

0
2
000

00

2
2

2
00

22

))((

1
00

2

)())((

11

zz

tar

taR

tar

taR

tar

taR
rr

rr

tar

taR

tar

taR

FR

r

FaFR

z

tar

taRz

tar

taR

ddd
r

dFFR

drar
G

FRdFRa

FRFRdQd
G

FR

dddd
r

tru

 

 

   












































































































2

20

0

20

120122

20

0

20

1

10

2

10

0

10

1

20

0

0

1

20

0

0

1

20

0

0

12

0

2

20

0

0

202

10

2

20

0

0

1
00

12
)(

2

)())((

1

)(

21

)(

2

02435210
2
000

00

2
22

2
002

00

2
1

))((

1
00

2
2

)())((

12

2
))(()()(

1
)(

1
2
1))(())(()()(

2
))(()))((()))(((

2
))((

)17()(
2

))(()(

z

tatR

z

FaFR

z

tatR

zzz

tatR

z

z

tar

taR
rr

z

tar

taRz
rr

tar

taR

FR

rz

tar

taR

FaFR

zz

tar

taR

d
G

FRddddddd

taCC
rtR

dFFRddrar

d
G

FRddFRaFR
G

FRd

dQd
G

FRdddd

 

  

    























































)()2(3
)()(

)2(3
)()()(

)(2
1)(

)()2(3
1)(

)2(3
)(1

))(())(()()(
2

))((

)))((()))(((
2

))(()(

00

3
0

0
2
000

00

2

0
2
00

)(
2

00

)(
3

00

)(

00

2

22

)(

10
2
000

00

2
)(

1

2
2
002

00

2
)(

1

))((

0

00

1

10

0

20

1

20

0

20

1

20

0

20

12

0

tRG
rrar

G
tRdra

tRG
dQ

tRG
dQ

G
tR

r

dFFRddrar
G

FRd

dFRaFR
G

FRddQ

rrrr

tR

r

tR

r

tR

r

z

tatR

z
rr

z

tatR

z

z
rr

tatR

z

FR

r

































 

   

 ,)()(

)2(3
)()(

)2(3
)()(

)2(
1)(

)2(3
1)(

)2(3
)()(

0
2
000

2
00

3
0

0
2
000

00

2
00

2

2
00

3
2

0000
0

2
000

0

00

rar

rG
rrar

G
rda

rG
dQ

rG
dQ

G
rrar

rr

rrrr

r

r

r

r

r

r
rr

















































 

 
Where )(2 F  is the root of the equation with respect to ztatR  0)( . From (17), 

taking with considering (10), to determine the mass velocity ut
 and the radial component 

of the soil deformation  rr
, we obtain the expressions: 



  

  





















































))(())(()()(
)2(

)))((())(((

))))((()))(((
)2(

))((()))(((

)))(((
)2(
))(()(

)2(
))((()(

)2(
))(()()())(,(),(

02020
2
000

00

0202

02
2
0002

00

02
02

2
00

02
00

02
)))(((

00

02
))((

00

02
)())((

))(()))((()(

0

02

0

02

0

02002

02002

0

0

tarFtarFRrar
G

rtarFRtarFR

tarFRatarFR
G

rtarFRtarFRa

tarFR
G

tarFRdQ
G

rtarFRdQ

G
tarFRdd

r
artrutru

rr

rr

rr

rtarFR

r

tarFR

r

tarFatarFR

rtarFartarFR

tar

rtar
tt




















 

 

 

  )18(,))(())(()()(
)2(

)((

)))((()))(((
)2(

))(()(
)2(

)((

)()()))((()))(((

0

0

0

0

0

0

12

0

0

0

202

10

0

010

0

0

)(
220

2
000

)( 00

2

)(
2

2
002

00

2
))((

)( 00

2

)()((

)(
12

0
0202






















































tar

rtar
rr

tar

rtar

tar

rtar
rr

FR

r

tar

rtar

FaFR

z

tar

rtarz

tar

tar

dFFRdrar
G

FR

dFRaFR
G

FRdQd
G

FR

dddd
r
artarFrtarFR




















 

  




































 






 


tatR

z
rr

rr

tarFR

r

tar

z

tarFatarFR

z
rrrr

d
tR

tarFtarFRrar

G
tarFRtarFRatarFR

G
tarFR

dQ
G

tarFRddttR
r
utr

0

10

02

0

0

10

02002

10

)(

02020
2
000

00

02
02

2
0002

00

02

))((

00

02
)()((

)()(
)(

1))(())(()()(

)2(
))(()))((()))(((

)2(
))((

)19(

)(
)2(
))(()()(

2
1)),((),(













   

 




































))())((

1120202

0
2
000

00

02
02

2
0002

00

02
)))(((

00

02
))(())(((

1202

10

0

20

1

10

0

10

02

0

02002

10

)()()(2)))((()))(((

)()(
)2(

)((())))(((()))(((

)2(
)))((()(

)2(
)((()()(
















FaFR

z

tar

zz

tar

z

rrrr

tatRFR

r

tatRFatatRFR

z

dddd
r

tatRFtatRFR

rar
G

tatRFRtatRFRatatFR

G
tatRFRdQ

G
tatRFRd

 

 

  




































































dFRaFR
G

FRdd

dd
tR

dFFRdrar
G

FR

dFRaFR
G

FRdQd
G

FR

rr

tatR

z

FaFR

z

tatR

z

z

tatR

z

tar

z

tar

z
rr

tar

z
rr

FR

r

tar

z

)))((()))(((
)2(

))(()(

)(
)(

2))(())(()()(
)2(

))((

)))((()))(((
)2(

)(()()(
)2(

)((

2
2
002

)(

00

2
))())(()(

1

)(

12220
2
000

0

2

2
2
002

0

2
))((

1
0

2

0

20

12012

10

0

10

1

10

0

10

0

20

0

20

0

20

12

0

0

20

 

9

E3S Web of Conferences 264, 02041 (2021)	 https://doi.org/10.1051/e3sconf/202126402041
CONMECHYDRO - 2021



0 0

20 20

0 0 2 1 0 2 12 2 2

20 20 10 20 20 10

( ) ( )
22

0 0 0 0 2 2
0 0

( ( )) ( ))

24 0 35 2 1 2 13

( ( )) ( ) ( ) ( ( )) ( ( ))
( 2 )

2 ( ) ( )

R t a t R t a t

rr
z z

r a t r a t R F a F

z z z z z z

R F r a r d R F F d
G

C a t C d d d d d d
r

d

   

        


         

 
  

  
 

       

      



 

     
0 02 2 1 1

20 20 0 20 20

0 1

20 20

( ( ))
2 2 1

2 1 1
0 0 0 0

2
0 0 0 0 1 2 2

( ( )) ( ( ))( ) ( )
( 2 ) ( 2 )

( ) ( ) ( ( )) ( ( ))

r a t r a tR F

z z r z z

r a t

rr
z z

R F R Fd Q d d
G G

r a r d d R F F d

  



     
 

        

 


  

 
 

      


    

 



 

    












































































da
tR

da
r

dQ

tR
dQ

r
dQ

G
dFFRd

drar
G

FRddQd
G

FR

dddddddCtaC
tR

rr

tR

r
rr

r

r

tR

r

r

r

r

tRz

tatR

z

rr
z

tatR

z

FR

rz

tatR

z

FaFR

zz

tatR

zzz

tatR

z

)()(
)(

2)()(2)(

)(3
2)(

3
2)()(

3
1

)2(
1))(())((

)()(
)2(

))(()()(
)2(

))((

)()(
)(

2

2
00

)(
3

3
2
00

2
3

)(
3

3
3

3
)(00

22

)(

1

0
2
000

00

2
)(

1

))((

1
00

2

)(

2

))())((

1

)(

21

)(

2350243

000

0

1

20

0

20

1

20

0

20

12

0

2

20

0

20

12012

10

2

20

0

20

1

10

2

20

0

10

   

 ,)()(
)(

11
)2(3

2

))(())(()()(
)2(

1

0
2
00033

00

3

2
00

2
00

00

rar
tRrG

r

tRatRrar
G

rr

rrrr



























  

where 
 

.)0()0(,0

)20(),()()),((),())(())(,(

,,

0

2
0

2435

0002000010

a
RrCC

ttttRrrtRrtru

tarztarz

rrrrt

















  

 
Further, according to 
 

i

i

i

i

rrrr

G
r
u

r
u

GG










 























3
1;

9
2;2

;2,2 00
                        (21) 

 
and 
 

   
))((2))(())(

;)(2)()(

00

0

rGrr
rGrr rrrrrrrr









 


,                  (22) 

 
considering (20), the volumetric deformation ),( tr  and stress components ),( trrr

. ),( tr of the soil in the disturbance region are determined (Figure 3).  
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Fig. 3. Graph of the change in the shock wave in the soil r = R (t) 
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3 Results and Discussion 

Specific calculations on a computer were carried out for the following initial data: 
 

1 1 12.69975 , 137.3133, 0.188206 ,a MPa в с МPа  

,10873.15,9847.237,24866.1 3
222 МPaсвMPaа 

,sec0.2,102.0,104.1 4
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In this case, the shock front is given in the form 
 

)24(0)(,2/)( 2
210 tRtRtRrtR  . 

 
The calculation results are presented in Figures 4-6 for 0 0.1r m  and in Fig.7 for 

0 1.0r m . Moreover, in Figure 4, curves 1, 2, 3 refer to sections 

0.1; 0.11 0.12r and m , curves 4 - to the front of a spherical shock wave ,)(tRr   

and curves 5 - to the surface )(tfr   where the radial stress rr  vanishes. 
 

 

Fig. 4. Curves of changes in stress rr , speed 


u , volumetric deformation   and displacement 

),( tru  depending on time t  at (curves 1,2 3), where curves 4 and 5 correspond to the front of the 

wave )(tRr   and surface )(tfr  , where 0rr
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Figure 5 shows that surface )(tfr  , where 0rr , turns out to be elongated towards 
the front of the shock wave, and the load )(0 t  is concave to the axis ot . The speed of 
the shock wave R , depending on the coordinate r , linearly decays (Figure 6). 

 

 

Fig. 5. Change in the load profile )(0 t  on the cavity with radius mr 1,00  and surface shape 

)(tfr  , where 0rr , depending on time t . 

 

Fig. 6. Change in the speed of the front of a spherical wave 


R  depending on the distance r  

The calculation results show that the load profiles ),()( 00 trt rr   obtained using the 
inverse method for cases (3) (Fig.7 dashed lines) and (3) (Fig.7 solid lines) are significantly 
different and have a decaying character depending on the time t . In this case, the )(0 t  

curve for (3) is located higher in absolute value than the )(0 t curve for (1). In the latter 

case, the law of decay of the curve )(0 t  turns out to be steeper with the smallest time 
interval of action on the boundary of the spherical cavity than for (3). In contrast to case (3) 

at (1), the mass velocity 


u  of the soil gradually increases depending on the time T (Fig. 7). 
The radial stress rr  at the cavity boundary decreases with time faster than at the front of 
the spherical wave ,)(tRr   (Figure 4 curves 1-4).  
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Fig. 7. Change in stress rr , mass velocity 


u , volumetric deformation 


 and displacement 
),( tru

 on a spherical cavity of radius 0 0.1r m
 depending on time 

t
 for cases 

),( iii  
 (solid) and 

)( iii  
 (dotted lines) 

Thus, we note that in the case of using the complicated equation of state of the soil (1), a 
spherical shock wave )(tRr   propagates in the soil, behind the front of which, in the 
disturbance region, the medium is unloaded. Similarly, you can research the case when 

),( i  . 

4 Conclusions 

1. The problem of the propagation of a spherical wave in the soil is solved analytically in 
the opposite way based on the deformation theory, taking into account the generalized 
equations of the state of the medium. 

2. The results are obtained by the inverse method of propagation of spherical shock waves 
in soil with complex equations of state. Concrete calculations on a computer show that 
the curves to the front of the spherical shock wave )(tRr  , and the curves to the 
surface )(tfr  , where the radial stress rr  vanishes. 

14

E3S Web of Conferences 264, 02041 (2021)	 https://doi.org/10.1051/e3sconf/202126402041
CONMECHYDRO - 2021



 
 

Fig. 7. Change in stress rr , mass velocity 


u , volumetric deformation 


 and displacement 
),( tru

 on a spherical cavity of radius 0 0.1r m
 depending on time 

t
 for cases 

),( iii  
 (solid) and 

)( iii  
 (dotted lines) 

Thus, we note that in the case of using the complicated equation of state of the soil (1), a 
spherical shock wave )(tRr   propagates in the soil, behind the front of which, in the 
disturbance region, the medium is unloaded. Similarly, you can research the case when 

),( i  . 

4 Conclusions 

1. The problem of the propagation of a spherical wave in the soil is solved analytically in 
the opposite way based on the deformation theory, taking into account the generalized 
equations of the state of the medium. 

2. The results are obtained by the inverse method of propagation of spherical shock waves 
in soil with complex equations of state. Concrete calculations on a computer show that 
the curves to the front of the spherical shock wave )(tRr  , and the curves to the 
surface )(tfr  , where the radial stress rr  vanishes. 

3. It was found that in the case of using the complicated equation of state (1), a spherical 
shock wave )(tRr   propagates in the soil, behind the front of which, in the perturbed 
region, the medium is unloaded. 

4. The calculation results show that the load profiles )(0 t  obtained using the inverse 
method for cases (1) (Figures 1, 7 dashed lines) and (1.2) (Figures 1, 7 solid lines) are 
significantly different and have a decaying character depending on the time t . 

5. In the process of solving the problem, it is assumed that when using (1, 4) and (1), a 
spherical shock wave propagates in the soil, at the front of which the medium is 
instantly loaded in a nonlinear manner, followed by a linear irreversible unloading with 
Young's modul 21 EandE . 
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