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Abstract. The effect of the linear and nonlinear properties of the beam's material on the dynamic behavior of a structure 

under different kinematic influences is investigated. With an account for the viscoelastic properties of the material, the 

problem under consideration is reduced to a system of small-order linear or nonlinear integro-differential equations by 

the selection of coordinate functions satisfying geometric boundary conditions; the problem is solved by the averaging 

method or using quadrature formulas. In the article, the problems are solved using the finite element method and the 

Newmark method. First, a resolving matrix system of linear or nonlinear differential or integro-differential equations is 

obtained using the finite element method, and then it is solved by the Newmark method. The advantage of the proposed 

algorithm is the use in the solution of all possible modes of vibration, which are ignored in conventional methods. 

Comparisons of the results of the forced vibrations of a beam, taking into account the viscoelastic properties of the 

material under different kinematic influences, show that at the initial time, the elastic and viscoelastic solutions 

practically do not differ from each other. Over time, the amplitude of oscillations of the points of the beam, reaching a 

certain maximum value, remains constant and then begins to decrease gradually. Analysis of the presented results of 

forced vibrations of the beam shows that the general case, when nonlinear and viscous properties of the material are taken 

into account, leads to the greatest decrease in the amplitudes of displacements of the beam points compared with all other 

results obtained. 

INTRODUCTION 

The practice of modern construction in seismic regions requires improving the methods for calculating 

engineering structures and buildings, taking into account the geometric features of structures and the nonlinear and 

dissipative properties of the material. 

Practical calculation methods are based on the dynamic analysis of structures as linearly elastic systems. 

However, instrumental data and the engineering analysis results on the structure operation during strong earthquakes 

indicate that the rigidity of structures does not always remain constant. Therefore, the parameters of the current 

response of structures must be determined by nonlinear analysis, which allows the development of more 

substantiated methods of design and construction, increasing the efficiency of structures while maintaining the 

required level of reliability. 

The current stage of development of the theory of seismic resistance involves an account for the nonlinear 

behavior of the structure material under dynamic loads; besides, real objects possess nonlinear properties in varying 

degrees. When the influence of nonlinearity is negligible, linear models and corresponding linear theories are used. 

As is known, when studying the dynamic behavior of structures, the problem under consideration for linear and 

nonlinear elastic systems is usually reduced, in some approximate way, to the Cauchy problem for the systems of 

ordinary linear or nonlinear differential equations, solved by the Runge-Kutta or Wilson methods [1–6]. 

With an account for the viscoelastic properties of the material, the problem under consideration is reduced to a 

system of small-order linear or nonlinear integro-differential equations by the selection of coordinate functions 

satisfying geometric boundary conditions and is solved by the averaging method or using quadrature formulas [7–8]. 
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In [9–12], a method is presented for determining the dynamic characteristics of a viscoelastic beam in the 

framework of the one-dimensional theory of viscoelasticity. The hereditary Boltzmann-Voltaire theory was used to 

describe dissipative processes in the building material. The natural vibrations of a viscoelastic beam are investigated, 

and the results obtained are compared with the results of field experiments. 

In [13–14], forced vibration analysis of isotropic thin circular plate resting on a nonlinear viscoelastic foundation 

is investigated. The system coupled nonlinear partial differential equations are transformed to a system of nonlinear 

ordinary differential equations using the Galerkin decomposition method. The developed solutions are verified using 

the existing results in the literature, and good agreement is observed. Subsequently, the analytical solutions are used 

to investigate the effects of various parameters on the dynamic response of the plate. The results show that the 

nonlinear frequency ratio of vibrating circular plates increases with increased linear elastic foundation and tensile 

force.  

In [15–18], vibrations of high buildings caused by wind and tornado waves were studied to assess the aeroelastic 

effects of high buildings using the wind tunnel tests. The aerodynamic damping coefficient and aerodynamic 

stiffness were determined by analyzing the aeroelastic force acting on the oscillating model. For a 347-meter-high 

building, the effect of aeroelastic parameters on wind-induced responses and equivalent static wind loads was 

analyzed. The results showed that during a return period of 100 years, aerodynamic damping was positive and 

aerodynamic stiffness was negative. 

In [19–22], a statement and a method for solving the problem of axisymmetric vibrations of a physically 

nonlinear viscoelastic cylindrical shell with lumped masses are presented. The function characterizing the deviation 

of the stress intensity curve from the Hooke's straight line is taken in the form of cubic nonlinearity. A mathematical 

model, a solution method, and a computational algorithm for the problem of axisymmetric vibrations of a cylindrical 

shell with a concentrated mass taking into account the physically nonlinear deformation of the material under 

various boundary conditions are developed within the framework of the Kirchhoff-Love hypothesis. To solve the 

resulting system with the Koltunov-Rzhanitsyn weakly singular kernel, a numerical method was applied using 

quadrature formulas.  

In this study, all the above problems are solved using the finite element and Newmark methods. First, using the 

finite element method, a resolving matrix system of linear or nonlinear differential or integro-differential equations 

is obtained, and then it is solved by the Newmark method. The advantage of the proposed algorithm is the use in the 

solution of all possible modes of vibration, even the ones ignored in other commonly used methods. 

The issue of assessing the account for nonlinearity for real structures remains open due to several mathematical 

problems that arise when solving the problem and the absence of the parameters of the material nonlinearity. This 

dictates the relevance of the studies presented in this article, where the dynamic behavior of a beam is studied, 

taking into account the linear and nonlinear viscoelastic properties of the material of structures under various 

kinematic influences. 

METHODS 

Unsteady-state forced vibrations of a high axisymmetric structure are considered; the structure is represented by 

a one-dimensional model - a viscoelastic beam of the annular cross-section with a variable slope of the generatrix 

and a variable thickness. The lower end of the beam (z = 0) is rigidly fixed, and the kinematic effect w0 (t) is set on 

it; the upper end (z = L) is free. The beam material is a nonlinearly viscoelastic one. Bending unsteady-state forced 

vibrations of points located at different levels of a structure under set kinematic effects are to be determined. 

The mathematical statement of the problem includes the variational equation of the principle of virtual 

displacements, according to which the sum of work of all active forces, including inertia forces, on a virtual 

displacement w, satisfying geometrical boundary conditions is zero 
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Here Ам , Аи , АР are the virtual work of the bending moment, inertial forces and external forces, 

respectively, calculated by the formulas: 
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where  is the beam material density, L is the beam length, w(z) is the beam deflection, M(z) is the bending 

moment; F(z) is the cross-sectional area; P(z, t) is the external dynamic forces. 

The kinematic boundary condition at the base is 

 

)(),(:0 0 twtzwz                                                (3) 

 

where w0(t) is the known time function. 

Initial conditions are 
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where 0u , 0u  are the given constants. 

To describe the relationship between the stress z and the strain z the nonlinear theory of viscoelasticity [3-4] is 

used, which has the form 

 

            z z z

t

z z

t

E t R t d t R t d  








   






















 1

0

3

2

3

0

( ) ( ) ( ) ( ) ( )             (5) 

 

where Е is the instantaneous modulus of elasticity of the material; R1, R2 are the relaxation kernels; =const0 is 

the nonlinearity coefficient, depending on the beam's material. 

The dependence between the deflection w and the strain z is taken in the form 
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and the relationship between bending moment Мz and stress z  is 

 


F

zz dFxM                                                  (7) 

 

The problem of unsteady-state nonlinear forced vibrations of a beam consists of the following: for a given 

function w0(t) under initial conditions 0u , 0u  - to find the deflection w(z, t), strain z(z, t), stress z(z, t) and 

bending moment Мz(z, t), satisfying equations (1), (2), (5) - (7) and conditions (3), (4) for any possible w. 

To reduce the variational problem posed above to a system of resolving equations, the finite element method is 

used [23], where a one-dimensional element is selected as the finite element, taken in the form of a truncated cone 

that works on bending with four degrees of freedom [25]. 

For the displacement function w inside the e-th element, the cubic approximation is used: 
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then for the first and second derivatives, the following expressions are obtained 
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The dependence of the nodal displacements and rotation angles of the e-th finite element {wi} on the vector of 

arbitrary constants {i} in matrix form is written as 
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Hereinafter, the following notation is used: {} - vector, [] - matrix, 
T
 - transposition operation. 

The transformation inverse to (10), i.e. the matrix dependence of {i} on {wi} is expressed as 

 

   ii w

llll

llll



























2323

22

1212

1323
0010

0001


, i.e.     ii wA                   (11) 

 

Using the indicated transformations (11), we express the displacement function (8) and its derivatives in a matrix 

form in terms of nodal displacements {wi} 
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We introduce the matrix [B] 
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Substituting expression (5-7) in (2), we obtain the virtual work of the bending moment for the e-th element  

 

2 2 2 2
2 2

12 2 2

0 0 0

( )

l t l

e

M

F F

w w w w
A x dF dz E R t x dF dz d

zz z z

   
    

  

        
          

        
    

 




















 ddzdFx

z

w

z

w
tREdzdFx

z

w

z

w
E

l

F

tl

F 



































































































   

0

4
2

3

2

2

2
00

4

2

2
3

2

2

)(
       (16) 

 

Substitution of (15) into (16) and integration over the cross-sectional area leads each term of expression (16) to 

the following form: 
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the first term 
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the second term 
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the third term
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Expanding the expression under the integral sign in (19): 
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we see that it is a vector whose coordinates are cubic polynomials from nodal displacements. 

As a result of integration over the length of the element, the third term (19) is 
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where the index "e" indicates that the vector {Vе} is defined for the e-th element. 

The fourth term 
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Considering (20), we get 
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The use of the finite element method procedure leads the variational problem (1) and (3) to a nonlinear system of 

integro-differential equations, which has the following matrix form: 
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Here [M], [K] are the matrices of mass and rigidity of the entire structure; {w} is the displacement vector of all 

the nodal points of the structure; {V} is a vector whose coordinates are determined by cubic polynomials of system 

displacements, {P} is a vector of external influences. 

This equation is solved by the Newmark method [24]. Equation (24) at given initial conditions (4) is solved by 

direct integration using a numerical step-by-step procedure. We used the Newmark method to solve the system of 

equations (24), based on independent expansions of w(ti+) and its derivative into the series in powers , while 

holding the terms containing the third derivative wi. The coefficients for the residual terms  and  are selected from 

the condition for ensuring the unconditional convergence of the integration process: 
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, expressions for displacements and velocities (25) are written as 

w w w w w wi i i i i i     1

2

3

12



  (   )                            (26) 

 

  (   )w w w w wi i i i i    1

2

1                                       (27) 

 

Then the acceleration obtained form (26)  

 

 ( )  w w w w wi i i i i     








1 2 1

1 1
1

1

2  
                           (28) 

 

is substituted into the velocity  expression (27) 

 ( ) w w w w wi i i i i    








  









1 1 1

2
2









 


                      (29) 

 

To find a solution wi1  for time ti+1, the general equation of motion is written as follows: 

 

  }{][][ 1111   iiii PwKwCwM                                       (30) 
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After substituting expressions for accelerations (28) and velocity (29) into (30), an algebraic system of equations 

is obtained  

 

  }{][ 11   ii RwA                                                 (31) 

 

Where 

    ][
1

2
MKA


  

 

       iiiiii WwwwMPR 















  }{1

2

1
}{

1
}{

1
211 


               (32) 

 

Where 

 

        
t

ii

t

ii VdtREVEdwKtRW
0

2
0

1 )(])[(                            (33) 

 

To solve the resulting system of equations (31), it is necessary to specify at the initial moment the values of 

displacements  0w
,
 velocity  w 0 , and accelerations{ }w 0 . Usually 0}{ 0 w  is taken. The Newmark method 

is unconditionally stable if 

 

 
2

0.5, 0.25 0.5             (34) 

 

RESULTS AND DISCUSSION 

Thus, the algorithm that implements the Newmark method for solving the matrix system of nonlinear differential 

equations (24) obtained in the course of finite element discretization with the initial condition (4) is as follows: 

1. The initial values are set {w0}, w 0 . 

2. A system of algebraic equations (31) is formed. The right-hand side contains nonlinear terms that determine the 

viscoelastic and nonlinear-viscous properties of the material, depending on the deformed state reached by the 

system. 

When accounting for the viscoelastic properties of the material with the above formulation, terms containing 

cubic terms from displacements are excluded in the right-hand side of the resulting resolving algebraic system of 

equations (24). In this case, the equation takes the following form 

 [M]{ w (t)}+[K]{w(t)}={P(t)}+ R t K

t

1

0

( )[ ]  {w(t)}d                           (35) 

 

with homogeneous initial conditions: 

0
)0,(

,0)0,( 
t

zw
zw




                                                 (36) 

 

The task is to determine the displacements of the points of the structure at different time points. The resulting 

nonlinear system of integro-differential equations (35) with initial conditions (36) is solved by the Newmark 

method. 
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The algorithm that implements the Newmark method for solving the matrix system of nonlinear integro-

differential equations obtained in the course of finite element discretization (35) is as follows: 

1. The initial values are set {w0}, w0 . 

2. A system of algebraic equations (31) with a linear right-hand side is formed, i.e., for {Wi (t)}=0. 

3. The system of linear algebraic equations (31) is solved, as a result of which the current value of the displacement 

vector {wi+1} is determined. 

4. The formulas of Newmark's method (28), (29) are used to determine the vectors of velocity and acceleration at the 

current time point ti+1. 

5. The value of integral R ti

t

t

i

i

1

1

( )



  d on the segment (ti-1, ti) is calculated by the formulas of numerical 

integration, for example, by the approximate formula of averages or by the formula of trapezoids. In the first case, 

the approximate value of the integral is defined as the product of the integrand at the point t i-/2 by the length of the 

segment . For i=1 ti--1=0.   In the second case, the value of the integral is approximately equal to  

 

0.5(ti-ti-1)[R1(ti-1)+R1(ti)]                                                            (37) 

 

6. The resulting value of the integral is multiplied by the vector [K] {wi}, and this vector is added to the right-hand 

side of the system (31). 

7. Steps 3 - 6 are repeated until the end of the process. 

In this formulation, with the developed methodology and the created computer program, several problems 

previously investigated in a linearly elastic formulation were solved [24-26]. In all the examples considered below, 

the values of the viscosity parameters are taken as R1 A=0.0194; =0.00000014; =0.075,  R2=2R1;   = 120000 

[27]. 

As seen from the comparison (Fig. 1) of the presented results of forced vibrations of the beams at the initial 

period, the elastic and viscoelastic solutions practically do not differ. Then, over time, the vibrations of viscous 

beams begin to differ markedly from the vibrations of elastic beams, the amplitude of which increases linearly. The 

amplitude of vibrations of points of beams with viscoelastic characteristics of the material, after reaching a certain 

maximum value, begins to decrease gradually. 

 

 
 

FIGURE 1. Forced vibrations of the point z = 325m of the beams at resonance mode 

:)68.1sin(1.00 tAw   - viscoelastic solution;  -elastic solution. 

Figure 2 shows the results of forced vibrations of the beams under the sinusoidal damping effect. 
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FIGURE 2. Forced vibrations of a point (z = 325m) of beams under the impact :)1.0exp()68.1sin(1.00 ttAw 

 - viscoelastic solution;  -elastic solution. 
 

Let us consider the forced unsteady vibrations of high-rise beams taking into account the viscoelastic properties 

of the material when the horizontal component of the real accelerogram of the Gazli earthquake acts on the base of 

the structure [24]. 

The results of solving the problem (Fig. 3) show that, at the initial period, the behavior of a viscoelastic structure 

does not differ from the behavior of an elastic one. Subsequently, an account for the viscoelastic properties of the 

structure material leads to a noticeable decrease in the vibration amplitude, high frequencies damp, and the 

vibrations of the viscoelastic structure have a pattern of free damped vibrations with the fundamental frequency of 

natural vibrations. It is seen here that an account for the viscoelastic properties of the material somewhat averages 

the displacements of the points of the beams, leaving as significant only the oscillations of the fundamental mode. 

 

FIGURE 3. Forced vibrations of the point (z = 325m) of the beams under the 

effect of the accelerogram of the Gazli earthquake:  - viscoelastic solution; 

 -elastic solution. 

 

Now let us consider a general case when both nonlinear and viscoelastic properties of the material are taken into 

account. In this case, the above formulation does not allow any simplifications on the right-hand side of the 

resolving system of nonlinear integro-differential equations (24). The equation has the form 

 

[M]{ w (t)}+[K]{w(t)}={P(t)}+ R t K

t

1

0

( )[ ]  {w}d+EJ1{V(t)}- 
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-EJ1 R t d

t

2

0

( )   {V(t)}                                         (38) 

 

with homogeneous initial conditions (36). 

The task is to determine the displacements of the points of the structure at different time points. The nonlinear 

system of integro-differential equations (24) with initial conditions (36) is solved by the Newmark method. 

 The algorithm that implements the Newmark method for solving the matrix system of nonlinear integro-

differential equations obtained in the course of finite element discretization (24) is as follows: 

1. The initial values are set {w0}, w0 . 

2. A system of algebraic equations (31) with a linear right-hand side is formed, i.e., for {Wi}=0. 

3. The system of linear algebraic equations (31) is solved, as a result of which the current value of the displacement 

vector {wi+1} is determined. 

4. The formulas of Newmark's method (28), (29) are used to determine the vectors of velocity and acceleration at the 

current time moment ti+1. 

5. The coordinates of the nonlinear vector {Wi}=E{Vi}, which are cubic polynomials in the found nodal 

displacements and rotation angles, are calculated using formulas (33). 

6. The resulting vector is added to the right-hand side of the system (31). 

7. By the formulas of numerical integration, for example, by the approximate formula of averages, the value of the 

integral R ti

t

t

i

i

1

1

( )



  d on the segment (ti-1, ti) is calculated as the product of the integrand at point ti-/2 by the length 

of the segment . For i=1 ti-1=0. 

8. The resulting value of the integral is multiplied by the vector [K] {wi}, and this vector is added to the right-hand 

side of the system (31). 

9. The product of the nonlinear vector {Wi} by the integral R t i
t

t

i

i

2

1

( )



  d is found. This product is also added to the 

right-hand side of the system (31). 

10. Steps 3 - 9 are repeated until the end of the process. 

In such a general statement, with the developed methodology and the created computer program, problems are 

solved in linear, nonlinear, and viscoelastic formulations [25-26]. In all the examples considered below, the values 

of the viscosity parameters are taken as R1 A=0.0194; =0.00000014; =0.075,  R2=2R1;     = 120000. 

According to the harmonic law, let us consider the forced vibrations of nonlinear-visco-elastic high-rise beams 

under kinematic excitation of the base [25]. The obtained horizontal displacements for the beams point z = 325m are 

shown in Fig. 4. A line with asterisks corresponds to these displacements. Here, for comparison, the solid line 

represents the solution for the same point of a linearly elastic structure. 

 

FIGURE 4. Forced vibrations of the point z = 325m of the beams taking into account the nonlinear 

viscoelastic properties of the material under the impact w 0 =0.1Asin(1.68t):   - nonlinear-

viscoelastic solution;   - linear-elastic solution. 
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The analysis of the results presented shows that the general case, when nonlinear and viscous properties of the 

material are taken into account, leads to the greatest decrease in the amplitudes of displacements of the points of a 

high-rise structure compared with all previous options. Figure 5 shows the results for sinusoidal damping of 

kinematic impact [24] at the base of the beams. 

 

 
FIGURE 5. Forced vibrations of the point z = 325m of the beams, taking into account the nonlinear 

viscoelastic properties of the material under the impact w 0 =0.1Asin(1.68t)ехр(-0,1t):   - 

nonlinear-viscoelastic solution;   - linear-elastic solution. 
 

Thus, the study of the dynamic behavior of a high-rise structure, taking into account the material's nonlinear and 

dissipative properties (different in nature), shows that the joint consideration of all these properties brings the 

resulting pattern closer to the one observed in reality. That is, the oscillation amplitude of the structure does not 

grow infinitely. Still, it gradually decreases over time, and the maximum possible consideration of nonlinear and 

dissipative properties leads to the fastest damping of oscillations. 

CONCLUSIONS 

1. The problem under consideration is reduced to a system of small-order linear or nonlinear integro-differential 

equations using the selection of coordinate functions; it is solved using the finite element method and Newmark's 

method. 

2. Investigation of forced vibrations of the beam considering the viscoelastic properties of the material under the 

resonance mode, sinusoidal damping, and the impact of the horizontal component of the real accelerogram of the 

Gazli earthquake on the structure foundation shows that at the initial time, the elastic and viscoelastic solutions 

practically do not differ from each other. Over time, the amplitude of vibrations of the beam points reaches its 

maximum value and begins to decrease gradually. 

3. Analysis of the presented results of forced vibrations of the beam shows that the general case, when nonlinear 

and viscous properties of the material are taken into account, leads to the greatest decrease in the amplitudes of 

displacements of the beam points compared with other results obtained. 

4. At a frequency close to the eigenfrequency of the beam, significant maximum displacements occur. If the 

material does not possess dissipative properties, then the structure will collapse. An account for the viscoelastic 

and nonlinear properties of the material significantly reduces the dynamic response of the structure and 

eventually takes it out of resonance. 
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