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Abstract. The paper is devoted to the study of dissipative properties of 

inhomogeneous viscoelastic systems of structures with dynamic vibration 

dampers. A detailed analysis of well-known studies concerning this problem 

is given. A mathematical model, technique and algorithm for studying the 

dissipative properties of inhomogeneous viscoelastic systems of high-rise 

buildings with dynamic vibration dampers are developed in the paper, taking 

into account the real geometry of structures. The hereditary Boltzmann-

Volterra theory was used to describe the viscoelastic properties of the 

damper and springs material. To solve the problem, the finite element 

method and the Muller method were used. The natural vibration modes of 

the Novo-Angren TPP smokestack with dynamic vibration dampers were 

investigated for various damper parameters. The imaginary part of complex 

eigenfrequency of the system was used as a dissipative index. A number of 

new mechanical effects were identified. The developed technique can be 

used to optimize the parameters of a viscoelastic damper for a structure. 

1 Introduction 

The problem of reducing the vibrations level of structural units is associated with the need to 

increase their strength and protect them from the harmful effect of vibrations. 

To date, various methods and means of dealing with unacceptable vibrations of structures 

are known, in particular, a change in stiffness and inertial parameters of structures in order 

to detune from resonances, an increase in damping properties by using materials and 

structures with high absorbing ability, for example, special coatings, vibration isolation and 

vibration dampers [1–5]. Each of the methods mentioned has its own rational area of 

application. A special place in solving this problem belongs to dynamic vibration dampers 

(DVD). 

One of the important aspects of research in the field of vibration protection of a structure 

is to define the possibilities of increasing the efficiency of vibration damping by complicating 

the DVD design or maintaining the same efficiency while simplifying the design of the DVD 

damping element. 
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The main task in projecting real structures with DVD is the necessity to optimize the 

damper parameters, which provide the greatest damping level of structure vibrations. 

To assess the efficiency of a structure system with dampers, it is necessary to study the 

natural vibrations of dissipative systems, i.e. the most ordered motion of the system, 

occurring in the absence of external excitations. In this case, the dissipative system oscillates 

according to a harmonic law with a complex eigenfrequency; the real part of this complex 

frequency means the system oscillation frequency, and the imaginary part determines the rate 

of oscillation damping and is, in the sense, the damping coefficient. 

In [1-7], much attention was paid to assess the effectiveness and to determine the optimal 

parameters of dynamic dampers for various structures and buildings. 

Along with it: 

- in [8], it was proposed, on the basis of a reliable mathematical model ICA, to efficiently 

calculate the eigenfrequency and damping coefficient of oscillations using the probability 

distribution function of eigenfrequency; 

- a frequency-based optimization method to find design variables such as mass, period and 

damping coefficient of the tuned mass damper on the top of the structure was presented in 

[9]; 

- in [10] the reduction of wind vibrations of a flexible structure with low internal damping 

was considered. Optimal mechanical properties of a damper with a mass to damp vibrations 

of high-rise buildings were investigated;  

- a new multidimensional device for isolation and mitigation of earthquake consequences was 

developed and tested in [11]. The influence of the excitation frequency and ambient 

temperature on the horizontal properties of this device was investigated; 

– in [12], the control characteristics of the Smart Outrigger damper system were investigated 

to reduce wind and seismic impact. Numerical analysis showed that the Smart Outrigger 

damper system can provide superior control performance to reduce wind and seismic impact; 

- the high-rise building vibrations caused by wind were investigated in [13], taking into 

account the influence of vortices created by different flows. The vibration level of a structure 

with a damper under wind load was investigated both with the emerging vortices and without 

them; 

- in [14-15], the models and methods of calculation were developed and the dynamics of the 

“high-rise structure - nonlinear damper - viscoelastic foundation” system was investigated; it 

allowed changing the input parameters of various design schemes and the loading options. 

Along with this, a number of publications were devoted to the study of the dynamics of 

various inhomogeneous systems, taking into account their features and operating conditions, 

in which the behavior of various structures under dynamic loading was evaluated [16–30]. 

Here is just a brief overview of some works devoted to the vibration study of a structure 

with dynamic dampers and the dynamics of various inhomogeneous systems. 

Despite the numerous available publications on this issue, the study of the effectiveness 

of damping ability of inhomogeneous systems, i.e. the structures with viscoelastic dynamic 

dampers is an urgent task. 

2 Mathematical model of the problem 

Bending natural vibrations of high-rise buildings (Figure 1) with annular cross-section F (z) 

and a piecewise constant slope of the generatrix are considered in the paper. The building 

material has viscoelastic properties. Dynamic vibration dampers mk (k=1,2,...,N) are installed 

at various levels of the structure. 
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Fig. 1. Model of a high-rise structure with dynamic vibration dampers. 

To describe the viscoelastic properties of the structure material, the linear hereditary 

Boltzmann-Volterra theory [31, 32] was used, according to which the relationships between 

stress z and strain  z have the form: 
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where E is the instantaneous modulus of elasticity and R1(t) is the relaxation kernel of the 

structure material;  t is an arbitrary function of time. 

The relationship between the deflection of the structure point w and strain z is taken as 
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and the relationship between the bending moment Мz and the stress z   has the form 


F

zz dFxM ~
~

                                                                  (4) 

where F(z) is the cross-sectional area of the structure. 

For the mathematical statement of the problem, the kinematic boundary condition was 

used - 
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z  0 :                    w(z,t)=0;              
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z
 0                                    (5) 

and the principle of virtual displacements, according to which the sum of the work of all 

active forces, including inertial ones, on a virtual displacement w, satisfying the geometrical 

boundary conditions, is zero, i.e. 

    Аm+Au+An +Auu =0                                                           (6) 

Here Аm, Au are the virtual work of the bending moment and inertia forces of the structure; 

Аn, Auu - virtual work of inertial forces of added mass mk, elastic and viscoelastic forces 

arising in the DVD elements. These works are calculated as follows: 
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Here  tzw ,  is the deflection of the neutral line at a point z ;   is the density of the building 

material; J (z), F (z), D, d, H are the moment of inertia, cross-sectional area, outer diameter, 

inner diameter and the height of the structure, respectively; N is the number of added mass. 

If the damper elements have viscoelastic properties, then they are described using an 

integral operator of the form: 

~
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where Kkl is the instantaneous stiffness of the damper; (t) is an arbitrary function of time; 

mk  is the added mass of dampers. 

It is required to find such motion of a structure with a DVD, in which each point of it 

performs harmonic oscillations of a frequency  and an amplitude w z( ) , the values of 

which vary from point to point according to a complex harmonic law, i.e. 

w z t w z e i t( , ) ( )   
                                                       (9) 

Here   R Ii , w z w z iw zR I
   ( ) ( ) ( )  are the complex eigenfrequencies and 

vibration modes. 
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In this case, the parameters reflecting the viscoelastic properties of the structure and 

damper material are replaced by approximate relations [26, 30, 32] 
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Substitution of (9) into (1) - (8) leads the problem under consideration to a complex 

variational eigenvalue one 
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with boundary conditions 

z  0 :           w
  0 ;          01 w                                                               (13) 

Thus, the problem of finding complex eigenfrequencies    R Ii and complex 

natural modes of vibrations  w z
  of the system under consideration (Fig. 1) was reduced 

to finding a constant   and a function   w z
,  that satisfy equation (12) and conditions 

(13) for any kinematic virtual displacementw


. 

In non-conservative systems, the real part R of the complex eigenfrequency 

   R Ii means the frequency of the system oscillations, and the imaginary part I  

determines the rate of oscillation damping and has the meaning of a damping coefficient. 

In this case, the logarithmic decrement of oscillations for the system under consideration 

can be determined using the formula  



 2 I

R

 .  

3 Solution methods  

The considered problem (12) and (13) is solved by the finite element method. When 

discretizing structures, a one-dimensional finite element in the form of a truncated cone with 

a cubic approximation of the displacement field inside the element was used. 
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The execution of the procedure by the finite element method (FEM) leads the variational 

problem (12) - (13) to a complex algebraic eigenvalue problem of the form: 

     К М х 2 0                                                             (14) 

Here:  К is the complex matrix of structure rigidity, the elements of which depend on

R ;   M  is the mass matrix of the structure;    R Ii ,      х х i xR I   

are the complex eigenfrequency and the vector, respectively. 

The dimension of the resulting equations (14) depends on the number of finite elements 

into which the structure is divided, plus as many equations are added as there are the added 

masses attached to the beam as part of the DVD. 

The complex eigenfrequency of problem (14) is determined by the Muller method [33] 

and the eigenvector by the Gauss method or the square root method [34]. 

In dynamic calculation of structures, the knowledge of only a few lower complex 

frequencies and modes of vibration is generally sufficient. An effective method for solving 

this class of problems is the Muller method [33], the main advantage of which is the ability 

to determine the required number of lower frequencies without determining the coefficients 

of the characteristic equation (14) in an explicit form. In this case, only the calculation of 

characteristic determinant of equation (14) is required at fixed values of I
2  . The 

preparatory stage of the method is the use of the square root method [34] in the decomposition 

matrices  К  and  M  in the form of a product of two triangular matrices and the 

representation of the characteristic determinant in the form: 

          Р К К М М
Т Т

    0                                                (15) 

The basis of the Muller method is represented by the iterative method in combination with 

parabolic interpolation of the characteristic determinant (15). The essence of the method is 

as follows. 

Based on three arbitrarily specified values of    0 1 2, ,  , the corresponding values of 

the characteristic determinant are calculated as in (15): 

Р t( )0 0 ,        Р t( )1 1 ,        Р t( )2 2                                      (16) 

The found values are used to construct the systems of interpolation equations of the second 

degree: 
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whence the coefficientsb b b0 1 2, , , used to construct the next interpolation equation of the 

second degree, are determined as 

b b b0
2

1 2 0                                                                 (18) 
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The choice of the interpolation polynomial of the second degree (and not the first or higher 

one) is due to the fact that it allows entering the plane of complex numbers with real axis 

without significant complications, even if the coefficientsР( ) and the initial 

approximations are the real ones. 

The root of equation (18), close in modulus to value of 2 , is taken as the next 

approximation of 3  and the whole procedure is repeated for the given values of 1 , 2 , 

3 , as a result of which the value of 4  is obtained, etc. The sequence   n  converges to 

some root of equation (15), regardless of the choice of initial approximations of 0 ,1 ,2

. If 0 1  , 1 0 , 2 1 , then the sequence   n is usually reduced to the smallest 

root of equation (15). The iterative process stops at 

 


n n

n


1

                                                            (19) 

where    is some given positive value that characterizes the accuracy of the approximate 

root value. 

After determining the first root of  
~
1 , it is separated from the characteristic determinant 

(15) by applying the order reduction formula: 

         Р К К М М
Т Т


 




 
1

0

1

~                                   (20) 

Further, from the characteristic determinant (20), the power of which has decreased by one, 

the second root 
~
2 of equation (15) is found by the above method with the same initial 

approximations. In this case, the found roots
~
1 , 
~
2 , ... , 

~
n  of equation (15) are the 

complex values. The complex eigenfrequencies   1 2, ,..., n   of problem (14) are 

calculated based on them. Further, substituting the found values of    1 2, ,..., n  into 

equation (14), the complex eigenforms       х х х n1 2, ,... are found by the square root 

method. 

4 Results and discussion 

As a concrete example, a real high-rise smokestack of the Novo-Angren thermal power plant 

(TPP) was considered. 

All geometrical dimensions of the smokestack of Novo-Angren TPP were taken from the 

design documentation: the smokestack height H = 325.0 m. Dimensions: at elevation: z = 0.0 

m: R = 19.0 m, h = 1.10 m; at elevations: z = 325.0 m: R = 8.35 m, h = 0.40 m. 

The parameters of physical and mechanical characteristics of the structure material are 

taken as: 

Е=2.9104MPa; =0.17; =2.5 t/m3 .  
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Here: H is the height, R - the outer diameter and h – the pipe wall thickness, z – the pipe 

elevations from the structure base; Е, ,  - the elastic modulus, density and Poisson's ratio, 

respectively. 

4.1. Accuracy estimation of the calculation method and algorithm 

Bending eigenfrequencies of the high-rise smokestack of the Novo - Angren TPP were 

determined, as a test example, in elastic statement without a damper, using the proposed 

technique and the results obtained were compared with the results of field experiments [35]. 

The results of comparison of the periods of flexural natural vibrations of a real high-rise 

pipe of the Novo-Angren TPP, (Ti =  2/i ) are: the ones obtained using the developed 

technique - T1 = 3.26 s, T2 = 0.91 s, T3 = 0.38 s, T4 = 0.21 s and certain periods of oscillations 

obtained in field experiments - T1 = 3.4 s, T2 = 1.0 s , T3 = 0.5 sec, T4 = 0.3 sec. 

An analysis of these results shows that the values of the periods of bending vibrations 

obtained in field experiments [35] are quite close to the ones found theoretically using the 

developed technique. 

4.2. Assessment of the complex eigenfrequency of structures with dynamic 
dampers  

Consider the change in eigenfrequencies of the smokestack of the Novo-Angren thermal 

power plant (TPP) with a dynamic vibration damper installed at its upper mark (z = 325m). 

Here the pipe with dampers is considered as an inhomogeneous system, i.e., if the structure 

material is visco-elastic, then the damper is elastic, or, if the material is elastic, then the 

damper is viscoelastic, etc. 

The main problem in reducing the vibration amplitude of a structure using DVD is to 

optimize the damper parameters, to tune it to certain frequencies and to increase the damping 

ability of the structure with vibration dampers. 

It is known [26, 30] that the greatest level of damping can be achieved only for 

inhomogeneous systems, i.e. when one part of the structure is elastic and the other is 

viscoelastic, or if both parts of the structure are viscoelastic, but of different viscoelastic 

properties. 

When solving the problem of natural vibrations of a structure with a damper, the question 

of the damper tuning arises; it consists in the following: the mass associated with the structure 

(Figure 1) leads to a certain decrease in the frequencies of natural vibrations (1, 2, ... , n) 

of the structure. On the other hand, the damper has its own partial frequency. Thus, for the 

structure under consideration, in the vicinity of one of the fundamental natural frequencies 

(bringing the natural frequency of the damper closer to it), two close frequencies could be 

obtained. Let 2 be the eigenfrequency of vibration damper. It is assumed that the damper 

must be tuned to the first eigenfrequency of the pipe 1. The damper tuning consists in the 

maximum approximation of the values of these frequencies and it is achieved by changing 

(varying) the value of K11 - the damper stiffness. 

Next, the problem of damping of the Novo-Angren TPP smokestack vibrations with 

dynamic vibration dampers installed at its upper elevation (z = 325m) (Figure 1) according 

to the first mode was solved. If it is necessary to reduce vibrations according to the other 

mode, this can be done by choosing the stiffness K11. If it is required to damp several vibration 

modes at once, then a damper is used with several masses m1, m2, m3,..., for which the 

stiffness К11, К22, К33,... etc. is selected.  

To tune the damper according to the first mode, its stiffness K11, mass m1, and viscoelastic 

parameters  
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(Г Гs c

2 2, ), that ensure energy dissipation, vary within different limits. At the first 

approximation, the smokestack is considered as an elastic structure (i.e., Г 1

ñ
 = 0; Г 1

s
= 0), 

then the viscoelastic properties of the structure material are taken into consideration. When 

describing the viscoelastic properties of the structure material, the Koltunov - Rzhanitsyn 

relaxation kernel was used: 

1

1 )(   tAetГ t
                                                                          (21) 

with the parameters of the relaxation kernel [35]: A = 0.00194;  = 0.00000014;  = 0.075. 

In the calculations, the following values of the damper mass were taken m1= 0.0004M; m1 = 

0.001M; m1= 0.002M (M is the pipe mass).  

Then, the change in the complex eigenfrequencies of the smokestack with DVD was 

investigated at different values of viscosities of the structure and the DVD material, as well 

as at different values of mass m1 and stiffness K11 of the damper. In this case, the found real 

part  R of the complex eigenfrequency =R-iI allows estimating the frequency of free 

damped oscillations, and the imaginary part I gives information about the damping 

coefficient of oscillations, i.e. determines the dissipative properties of a structure with the 

DVD, as a whole. 

Figure 2 shows the change in real R and complex I parts of the complex eigenfrequency 

 of the Novo-Angren TPP smokestack with dynamic vibration dampers. The pipe itself was 

considered as a viscoelastic structure, and the DVD - as an elastic single-mass structure (i.e. 

with parameters Г Гs c

2 20 0 , ), installed at a pipe height z = 325m. The presented 

results (Figure 2) show the change in two close frequencies of a single system – a structure 

with the DVD (Figure 1). The first frequency of the system 1 corresponds to the 

eigenfrequencies of a viscoelastic structure (pipe), and the second frequency 2  - to the 

eigenfrequencies of a single-mass elastic damper. Consider the change in these frequencies 

for different values of mass m1  and the damper stiffness K11. 

The nature of the change in eigenfrequencies versus stiffness K11 showed (Figure 2) that 

it has the form of a Wien diagram for the partial frequencies of a multi-mass system, i.e. with 

an increase in the rigidity K11, the real parts 1R,  2R of the complex eigenfrequencies 1 

and 2 asymptotically approach each other (Figure 2a), and then diverge.  

m1=0.0004*M. 

a.  R b.   I 

K11 K11 

Fig. 2. Changes in the components of complex eigenfrequency of a viscoelastic pipe of the Novo-

Angren TPP with the DVD at different values of the stiffness of elastic damper:  - damper;  

 - pipe. 
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As for the imaginary parts 1I, 2I, up to a certain value of  К11, they approach each other and 

intersect , and at further increase in stiffness К11, they sharply diverge (Figure 2b). This means 

that the DVD in the given spectral domain, (i.e. at high values of K11) has the greatest 

dissipative ability. 

The pattern shown in Figure 2, the approach of eigenfrequencies and their subsequent 

divergence when changing the parameters of the ”structure-damper” system, is characteristic 

of weakly coupled systems and is explained by the interaction of close natural modes of 

vibration. 

The results (Figure 2) show that the values of real parts  1R, 2R of the above complex 

frequencies 1 and 2 have the maximum approximation at 1I2I . 

Despite the fact that the damper is elastic, it has the highest dissipative properties at 

certain values of the spring stiffness. This is due to the energy transfer from one object to 

another in a coupled system "structure-damper" (Figure 2b). The studies carried out at various 

values of the damper mass showed that the less the damper mass, the higher the energy 

transfer rate (Figure 2b). An increase in the damper mass leads to a weakening of the structure 

- damper connection. 

These studies do not entirely confirm the statement given in [26, 30], that in structurally 

inhomogeneous systems when two or more eigenfrequencies approach each other, it is 

possible to achieve a sharp increase in the damping rate of certain vibration modes of the 

structure due to the interaction of close natural vibration modes of the structure and the 

damper. In fact, with an increase in the damper stiffness, the dissipative ability of the damper 

increases due to a decrease in these properties of the structure. 

Figure 3 shows the change in real R and complex I parts of the eigenfrequency of the 

Novo-Angren TPP smokestack with the DVD, obtained at different values of stiffness K11 

and viscoelastic propertiesГ Гs c
2 2,  of the damper spring. In this case, the structure itself 

was considered as an elastic structure, and the DVD as a viscoelastic structure of a mass m1 

= 0.004M located at the pipe height of z = 325m. 

These results (Figure 3) confirm the above conclusions that energy in an inhomogeneous 

system is transferred from one body to another. If the spring stiffness of the damper is small, 

then the system is almost uncoupled (Figure 3a). In this case, 1R - the eigenfrequency of a 

pipe with the DVD - corresponds to the eigenfrequency of an elastic pipe without a damper, 

i.e. 1I0 (Figure 3b). A study at various values of the viscosity parameters showed that an 

increase in the spring viscosity of the damper leads to an increase in the pipe - damper 

connection, to a more intense energy transfer from one body to another and to an increase in 

the dissipative properties (I) of the pipe with the DVD (Figure 3b). 

0.1;Гc
2  0.01Гs

2   

a. R b. I 

10

E3S Web of Conferences 224, 02020 (2020)
TPACEE-2020

https://doi.org/10.1051/e3sconf/202022402020



 
K11 

 
K11 

Fig. 3. Changes in the components of the complex eigenfrequency of the Novo-Angren TPP elastic 

pipe with the DVD of mass m1 = 0.0004M at different values of the damper spring stiffness and 

viscosity:---   damper; - pipe. 

The highest rate of energy transfer occurs when the real parts of the first 1 and second 2 

complex frequencies of the pipe with the DVD approach each other. 

Figure 4 shows the results of the change in R and I for a viscoelastic pipe with a 

viscoelastic damper (Г 2

ñ
=0,2; Г 2

s
=0,02), installed at the pipe height z = 325m. Various 

studies were carried out to assess the efficiency of vibration damping of the considered 

systems depending on the value of mass m1 and the spring stiffness of the damper K11. It was 

assumed that the pipe and the damper springs have different viscoelastic properties.  

m1=0.0004*M; 0.2;Гc
2  0.02Гs

2   

a.  R b.   I 

 
K11 

 
K11 

Fig. 4. Changes in the components of the complex eigenfrequency of the Novo-Angren TPP viscoelastic 

pipe with a viscoelastic DVD at different values of the mass and spring viscosity of the damper: 

- damper;  - pipe.  

The results obtained for different values of the damper mass and viscosity showed that an 

increase in the damper mass reduces the pipe with the DVD to a weakly coupled system. The 

change in  I shows that in this case when the energy transfer from one body to another is 

weakly expressed, the change in 1I and 2I  at further increase in spring stiffness (after the 

approach of 1R  and 2R) does not lead to a sharp increase or decrease in I, they remain at 

the same value. Here, with an increase in the damper stiffness, the dissipative ability of the 

damper increases, and the dissipative ability of the structure decreases. 
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Figure 5 shows the results of changes in R and  of the Novo-Angren viscoelastic pipe 

with a viscoelastic DVD installed at a height of z = 325m, depending on the viscoelastic 

properties and spring stiffness of the damper. Here, the mass of the damper did not change 

and was equal to m1 = 0.0004M. As the results show, when the viscous properties of the 

damper are less than the viscous properties of the pipe (after the frequencies 1R  and 2R 

approach each other), energy is transferred from the pipe to the damper (Figure 5). 

Г Гc s

2 204 004 . ; .
 

a. R b. I 

 
K11 

 
K11 

Fig. 5. Change in the components of the complex eigenfrequency of the Novo-Angren TPP viscoelastic 

pipe with a viscoelastic DVD of mass m1 = 0.0004M at different values of spring stiffness and viscosity 

of the damper:  - damper;    - pipe. 

If the viscous properties of the pipe and the damper are the same, then there is no transfer 

of dissipative properties from one body to another, as the system is a homogeneous one 

(Figure 5). If the viscous properties of the damper spring are greater than the viscous 

properties of the pipe, then after the frequencies 1R  and 2R approach each other, the 

dissipative properties transfer from the damper to the pipe (Figure 5). In this case, the 

dissipative properties of the damper increase, and the dissipative properties of the structure 

decrease. 

Studies have shown that to increase the dissipative ability of an elastic structure with 

dampers, the greatest effect can be obtained using a viscoelastic damper. To evaluate the 

efficiency of vibration damping in structure-damper inhomogeneous systems, it is necessary 

to use this technique in each case. 

5 Conclusions 

1. A mathematical model was developed to assess the dissipative ability of an inhomogeneous 

system of a structure with dynamic vibration dampers in a one-dimensional statement, taking 

into account the viscoelastic properties of the structure and damper material. 

2. The hereditary Boltzmann-Volterra theory of viscoelasticity was used to account for the 

viscoelastic properties of the structure and damper material. 

3. A technique and an algorithm were developed for determining the complex 

eigenfrequencies of inhomogeneous viscoelastic systems of a structure with the dampers 

using the finite element method and the Muller method. 

12

E3S Web of Conferences 224, 02020 (2020)
TPACEE-2020

https://doi.org/10.1051/e3sconf/202022402020



4. The reliability of the developed methodology and algorithm was verified by comparing 

the obtained results with the results of field experiments. 

5. The imaginary part ωI of the complex eigenfrequencies  ω = ωR − iωI  of the considered 

system was used as an index of dissipative properties. 

6. Natural vibrations of the Novo-Angren TPP smokestack with dynamic vibration dampers 

were investigated for various viscous properties of the structure material and damper springs; 

this made possible to reveal a number of new mechanical effects. 

7. The developed technique will make it possible to determine the optimal parameters of the 

damper for effective damping of vibrations in inhomogeneous structure – damper systems. 
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