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Abstract. Studies were conducted to analyze the behavior of a high-rise structure on various 

kinematic effects, taking into account the real geometry, dissipative and nonlinear properties of 

the structure material. A generalized approach was developed for the dynamic calculation of 

high-rise structures, and the frequency response characteristics at various points of the structure 

were built. It was found that nonlinear properties are manifested when the impact can cause 

significant strain in the structure. This applies not only to the magnitude of the impact 

intensity, but also to its frequency content. If a non-linearly elastic strain of the material is 

manifested in the structure, then this leads to a decrease in the amplitudes of points 

displacements and to an increase in oscillation period compared to a linearly elastic structure 

under similar kinematic effects. 

 

1. Introduction  
In the dynamics of structures, studies of dynamic characteristics (i.e., natural frequencies, forms and 

decrements of vibrations) of a structure occupy a special place. The dynamic characteristics are a 

passport of the structure and allow us to judge the dynamic properties of the structure as a whole, 

without even examining its behavior under various influences. Determination of natural frequencies 

and vibration modes for elastic structures is an independent and rather difficult task. The 

determination of structure dynamic characteristics is complicated by an order of magnitude when 

dissipative properties of the material are taken into account. 

High-rise structures include high-rise monolithic reinforced concrete structures, high-rise chimney 

stacks and ventilation pipes of thermoelectric and nuclear power plants, cooling towers of 

thermoelectric power plants and nuclear power plants  and protective shells of nuclear power plants . 

Due to their design features and geometric dimensions, they are unique structures. Today, a large 

number of different high-rise structures are operated and built all over the world, including high-rise 

chimney stacks; the height of some of them reaches 150 m - 600 m 1-2]. If for the pipes of a height of 

50 m the ratio of wall thickness  to the radius R of its middle surface at the base is /R=1/51/7, then 

for the pipes of a height of 250 - 300 m it is /R = 1/121/15, and for the pipes of a height of H=420 

m, the ratio /R is /R1/23. With increase in height H and radius R, the wall thickness of the pipe  

grows slowly 1-2. Along with this, the pipe radius, thickness and slope of the cone change along its 

height, gradually moving from a conical section to a cylindrical one. 

The design and construction of various high-rise structures require ensuring their reliable operation 

under various dynamic influences. This, in turn, dictates the conditions for limiting and reducing the 



FORM-2020

IOP Conf. Series: Materials Science and Engineering 869 (2020) 052047

IOP Publishing

doi:10.1088/1757-899X/869/5/052047

2

level of structure vibrations from harmful dynamic effects. To date, various methods and means of 

dealing with unacceptable vibrations of structures are known, in particular, the change in rigidity and 

inertial parameters of structures in order to detune from resonances, the increase in damping properties 

by using materials and structures with high absorption capacity, for example, special coatings, the use 

of vibration isolation and various types of vibration dampers [8-10]. Each of the mentioned methods 

has its own rational range of application. 

In acting building codes, the dynamic calculation model of axisymmetric structures (high-rise 

pipes, cooling towers, etc.) is adopted in the form of an elastic cantilever with distributed or 

concentrated mass, which does not account for a number of factors — real geometry, design features, 

spatial nature of the structure, dissipative properties of the structure material and others that directly 

affect the sought for values of dynamic characteristics and the stress-strain state of structures under 

various impacts. As a result, the found values of the sought for quantities noticeably differ from the 

real ones. 

Studies of the natural vibrations of high axisymmetric structures (smokestacks) showed that despite 

the differences in nature of the higher modes of vibrations of the structures under consideration, the 

fundamental modes (bending, longitudinal and torsional) and the corresponding eigenfrequencies are 

independent of the dimension of the selected calculation model. Therefore, the studies of structure 

dynamic behavior in an unsteady-state mode, taking into account elastic, viscoelastic and nonlinear 

strain of the material, can be carried out in the framework of a one-dimensional model. The simplicity 

of the calculation model allows us to study in detail the effect of various laws of change under the 

impact and various laws of material strain on the dynamic behavior of structures. Dissipative 

processes in the materials are taken into account by the Voigt, Maxwell, and Kelvin models, but they 

do not always agree with experimental data, therefore, to eliminate this, the models with hysteresis 

absorption or hereditary viscoelastic Boltzmann-Volterra models are used, although their 

implementation is rather difficult and available experimental data are scarce [3–7]. 

The practice of modern construction in seismic regions requires studying the dynamic behavior of 

structures and improving the methodology for their calculation, taking into account not only 

geometrical features of structures, but nonlinear and dissipative properties of the structure material as 

well. Practical methods of calculation are usually based on the dynamic analysis of structures as the 

linearly elastic systems. However, instrumental data and the results of engineering analysis on the 

nature of structures operation under strong earthquakes indicate that the structure rigidity does not 

always remain constant. Therefore, the parameters of actual reaction of the structures should be 

determined only in non-linear analysis, which allows developing more reasonable methods of design 

and construction, increase the efficiency of structures while maintaining the required level of 

reliability. To date, a number of publications are known devoted to the study of the dynamics of 

structures, in which calculation methods, research results are highlighted, and an attempt is made to 

consider the dissipative properties of the material. 

In [15–17], the aerodynamic wind damping coefficients of modified square high-rise buildings 

were studied on the basis of estimated results. The effect of aerodynamically modified cross sections 

on the coefficient of aerodynamic damping under across-wind was investigated. The aerodynamic 

wind damping coefficients in high-rise buildings were determined using the eigensystem realization 

algorithm (ERA) method in combination with the random decrement technique (RDT). 

Various basic and secondary modifications of the external forms of high-rise buildings and their 

advantages compared to conventional forms (square, triangular, round) were considered in [18–20]. 

The influence of wind-induced aerodynamic forces and moments was studied in buildings with a 

changed height; the space-time characteristics of vibrations were determined 

In [21–25], the eigenfrequencies of a cylindrical shell under various boundary conditions were 

studied, the influence of uniform external pressure and symmetrical boundary conditions on the 

eigenfrequencies of homogeneous and multilayer isotropic cylindrical shells was studied, and the 

vibrational process of rigid composite cylindrical shells was investigated taking into account the 

bending behavior of the ribs. 
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In [26-27], the determination of the dynamic characteristics of high-rise monolithic reinforced 

concrete structures was investigated and the results obtained were recommended for certification of 

buildings. 

Parametric vibrations of viscoelastic orthotropic plates of variable thickness were studied in [28–

31], under external load, taking into account the influence of geometric nonlinearity, viscoelastic 

properties of the material, and other physicomechanical and geometrical design parameters on the 

dynamic instability region. 

In [32–35], vibrations of high buildings caused by wind and tornado waves were studied to assess 

the aeroelastic effects of high buildings using the wind tunnel tests. The aerodynamic damping 

coefficient and aerodynamic stiffness were determined by analyzing the aeroelastic force acting on the 

oscillating model. For a 347-meter-high building, the effect of aeroelastic parameters on wind-induced 

responses and equivalent static wind loads was analyzed. The results showed that during a return 

period of 100 years, aerodynamic damping was positive and aerodynamic stiffness was negative. 

The current stage in the development of the theory of seismic resistance involves an account for 

nonlinear behavior of the structure material under dynamic loads. Any real objects possess non-linear 

properties to a different extent but in some cases the influence of non-linearity is negligible, in such 

cases linear models and the corresponding linear theories are used. The question of estimating the 

nonlinearity for real structures remains open due to a number of mathematical problems that arise 

when solving the problem and in the absence of nonlinearity parameters of the material. This dictates 

the relevance of the studies presented in this paper, where the dynamic behavior of a high-rise 

structure is studied taking into account the linear, nonlinear strain and energy dissipation caused by 

internal friction in the building material under various kinematic effects. 

 

2. Methods 

Unsteady-state forced vibrations of a high axisymmetric structure are considered; the structure is 

represented by a one-dimensional model - a viscoelastic beam of annular cross section with a variable 

slope of the generatrix and a variable thickness. The lower end of the beam (z = 0) is rigidly fixed and 

the kinematic effect w0 (t) is set on it; the upper end (z = L) is free. The beam material is a nonlinearly 

viscoelastic one. Bending unsteady-state forced vibrations of points located at different levels of a 

structure under set kinematic effect are to be determined. 

The mathematical statement of the problem includes the variational equation of the principle of 

virtual displacements, according to which the sum of work of all active forces, including inertia forces, 

on a virtual displacement w, satisfying geometrical boundary conditions is zero 

0 PиM AAA                                            (1) 

Here Ам , Аи , АР – are the virtual work of the bending moment, inertial forces and external forces, 

respectively, calculated by the formulas: 
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where  - is the beam material density, L – the beam length, w(z) - the beam deflection, M(z) -  the 

bending moment; F(z) - the cross-sectional area; P(z, t) – the external dynamic forces. 

The kinematic boundary condition at the base is 

)(),(:0 0 twtzwz                                             (3) 

where w0(t) - is the known time function. 

Initial conditions are 
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where 0u , 0u  are the given constants. 
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To describe the relationship between the stress z and the strain z the nonlinear theory of 

viscoelasticity [4] is used, which has the form 
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where Е - is the instantaneous modulus of elasticity of the material; R1, R2 are the relaxation kernels; 

=const0 is the non-linearity coefficient, depending on the material of the beam. 

The dependence between the deflection w and the strain z is taken in the form 



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z x
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z
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2

2
  ,                                               (6) 

and the relationship between bending moment Мz and stress z  is 


F

zz dFxM                                                  (7) 

The problem of unsteady-state nonlinear forced vibrations of a beam consists in the following: for a 

given function w0(t) under initial conditions 0u , 0u  - to find the deflection w(z, t), strain z(z, t),  ), 

stress z(z, t) and bending moment Мz(z, t), satisfying equations (1), (2), (5) - (7) and conditions (3), 

(4) for any possible w. 

To reduce the variational problem posed above to a system of resolving equations, the finite 

element method is used [11], where a one-dimensional element is selected as the finite element, taken 

in the form of a truncated cone that works on bending with four degrees of freedom (figure 1). 

 

 

For the displacement function w inside the e-th element, the cubic approximation is used: 
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The dependence of the nodal displacements and rotation angles of the e-th finite element {wi} on 

the vector of arbitrary constants {i} in matrix form is written as 
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T
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Figure 1. A finite element used 
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The transformation inverse to (10), i.e. the matrix dependence of {i} on {wi} is expressed as 
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Using the indicated transformations (11), we express the displacement function (8) and its 

derivatives in a matrix form in terms of nodal displacements {wi} 
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We introduce the matrix [B] 
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Substituting expression (5-7) in (2), we obtain the virtual work of the bending moment for the e-th 
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Substitution of (15) into (16) and integration over the cross-sectional area leads each term of 

expression (16) to the following form: 

the first term 
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the third term
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Expanding the expression under the integral sign in (19): 
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we see that it is a vector whose coordinates are cubic polynomials from nodal displacements. 

As a result of integration over the length of the element, the third term (19) is 
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where the index ―e‖ indicates that the vector {Vе} is defined for the e-th element. 

The fourth term 
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Considering (20), we get 
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The use of the finite element method procedure leads the variational problem (1) and (3) to a 

nonlinear system of integro-differential equations, which has the following matrix form: 

            )()()()(])[()()()(
0

2
0

1 tVdtREtVEdtwKtRtPtwKtwM
tt

      

(24) 

Here [M], [K] are the matrices of mass and rigidity of the entire structure; {w} is the displacement 

vector of all the nodal points of the structure; {V} is a vector whose coordinates are determined by 

cubic polynomials of system displacements, {P} is a vector of external influences. 

This equation is solved by the Newmark method [12]. Equation (24) at given initial conditions (4) 

is solved by direct integration using a numerical step-by-step procedure. We used the Newmark 

method to solve the system of equations (24), based on independent expansions of w(ti+) and its 
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derivative into the series in powers , while holding the terms containing the third derivative wi. The 

coefficients for the residual terms  and  are selected from the condition for ensuring the 

unconditional convergence of the integration process: 

w t w w w wi i i i i( )        




2

3

2
 

 ( )   w t w w wi i i i     2                                         (25) 

Substituting 
 

w
w w

i

i i


1


, expressions for displacements and velocities (25) are written as 

w w w w w wi i i i i i     1

2

3

12



  (   )                            (26) 

  (   )w w w w wi i i i i    1

2

1                                       (27) 

Then the acceleration obtained form (26)  

 ( )  w w w w wi i i i i     








1 2 1

1 1
1

1

2  
                           (28) 

is substituted into the velocity  expression (27) 

 ( ) w w w w wi i i i i    








  









1 1 1

2
2









 


                      (29) 

To find a solution wi1
 for time ti+1, the general equation of motion is written as follows: 

  }{][][ 1111   iiii PwKwCwM                                     (30) 

After substituting expressions for accelerations (28) and velocity (29) into (30) an algebraic system 

of equations is obtained  

  }{][ 11   ii RwA                                              (31) 

Where 

    ][
1

2
MKA


  

       iiiiii WwwwMPR 















  }{1

2

1
}{

1
}{

1
211 


            (32) 

where 

        
t

ii

t

ii VdtREVEdwKtRW
0

2
0

1 )(])[(                  (33) 

To solve the resulting system of equations (31), it is necessary to specify at the initial moment the 

values of displacements  0w
,
 velocity  w 0 and accelerations{ }w 0 . Usually 0}{ 0 w  is taken. The 

Newmark method is unconditionally stable if      05 0 25 0 5
2

. , , , . 

 

3. Results and discussion 

The dynamic behavior of a high-rise smokestack of the Novo-Angren hydro-electric power plant is 

considered; its actual dimensions are presented in [14], the smokestack is rigidly pinched at the base. 

The problem of forced unsteady-state vibrations of this structure is solved under various laws of 

kinematic disturbance of the lower base. The material of the structure is assumed to be a nonlinearly 

elastic one. 

In this case, equation (24) takes the following form 
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                                                                     [M]{ w (t)}+[K]{w(t)}={P(t)}+E{V(t)}                               

(34) 

under corresponding initial conditions (4). For the problems considered in this section, the initial 

conditions are assumed to be homogeneous, i.e. 

w(z,0)=0,         




w z

t

( , )0
0 .                                      (35) 

The task is to determine the displacements of the points of the structure at different points in time. 

The obtained linear system of differential equations (34) with initial conditions (35) is solved by the 

Newmark method. Using the developed techniques and composite programs for an PC-IBM, some 

problems were solved and the dynamic behavior of high-rise structures was studied taking into 

account the properties of the nonlinear elastic properties of the material. In all the values of the 

coefficient  considered below, equal to 120,000. 

3.1. Resonance mode.  

The lower base of the pipe is subjected to a kinematic effect of the type  

z=0:            sin( )u pt0                                                (36) 

The frequency of impact p was chosen close to the eigenfrequency 0 of the pipe bending 

vibrations. 

The obtained horizontal displacements of various points of the pipe are shown in Fig. 2. Figure 2b 

shows the diagram of nonlinear deformation  for the upper part of the pipe resulting from this 

action. Here, for comparison, asterisks show the linear strain diagram  obtained by the same action 

in the elastic case. 

а) 

b) 

 

а) 

 
b) 

 
Figure 2. Forced vibrations of various points of 

the pipe taking into account the nonlinear 

elastic properties of the material at resonance: 

a) oscillations of the pipe points: -*-*-*-* - at a 

height of z = 200m; ____ - at a height of z = 

325m. b) stress-deformation diagram: _____ 

nonlinearly elastic material; -*-*-*- linearly 

elastic material. 

Figure 3. Forced vibrations of various points of 

the pipe taking into account the nonlinear elastic 

properties of the material at a long pulse (T=5 

sec): a) oscillations of the pipe points: -*-*-*-* - 

at a height of z = 200m; ____ - at a height of z = 

325m. b) stress-deformation diagram: _____ 

nonlinearly elastic material; -*-*-*- linearly 

elastic material. 

As can be seen from the results (Fig.2.a), the displacements of the pipe points are oscillatory in 

nature with the amplitude increasing with time. The deformation diagram (Fig.2.b) in this case is 

pronounced non-linear. 
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3.2. Long-term impulse effect. 

The kinematic effect is set on the lower base of the pipe according to the law: 

z=0:            
sekt

sekt
u

5

5

0

1
0









                                              (37) 

Here, the pulse duration exceeds the main period of natural vibrations. The nature of the impact and 

the movements of various points of the pipe obtained using the developed program are shown in 

Fig.3a, the stress-deformation diagram in Fig.3b. 

3.3.Sinusoidal - damping effect. 

Damping kinematic effects can occur when the structure is loaded with seismic, explosive and other 

long-term unsteady impacts. Therefore, the kinematic effect set on the lower base of the pipe is 

considered according to the law of a damping sinusoid: 

z=0:     )exp()sin(0 tptAu                                           (38) 

Here A is the amplitude of the impact; p0 - is the impact frequency equal to the first frequency 

of the bending eigenmodes of the pipe;  =0.1 is the coefficient characterizing the impact attenuation 

over time. The amplitude of the impact A is chosen so that its maximum is 0.1. This is done to be able 

to compare the displacements obtained in all cases and to analyze the effect of impact nature, but not 

its intensity. 

The amplitude of action thus obtained is equal to 

A

p
p

arctg
p

p













2 2



exp

                                   (39) 

The obtained horizontal displacements of the middle and upper points of the high-altitude pipe 

under kinematic effects are shown in Fig. 4a. Figure 4b compares the displacements of the point z = 

325 m obtained with a linearly elastic solution and taking into account the nonlinear deformation of 

the material. Figure 4c shows the diagram of nonlinear deformation  in the upper part of the pipe. 

Here, asterisks, as in the previous example, show a linear diagram obtained in the elastic case. 

 

a) 

 

b) 

 

c) 

 

Figure 4. Forced vibrations of various points of the pipe taking into account the nonlinear elastic 

properties of the material under damping effect: a) oscillations of the pipe points: -*-*-*-* - at a 

height of z = 200m; ____ - at a height of z = 325m. b) oscillations of the point z = 325m:_____  

nonlinear solution; -*-*-*- linear solution; c) stress-deformation diagram: _____ nonlinearly elastic 

material; -*-*-*- linearly elastic material. 

 

As can be seen from Fig.3b, the displacements obtained in this case are also somewhat inferior to 

the displacements in the perfectly elastic case under the same action. The oscillation period in the 

nonlinear version increases. To a large extent, the noted differences are manifested with an increase in 

displacements and deformations over time. The deformation diagram, as in the previous example, is 

nonlinear. 
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4. Conclusions 

Based on the above studies, the following conclusions can be drawn: 

1.A generalized approach to solving problems of unsteady-state forced vibrations of a high-rise 

structure taking into account the real geometry, dissipative and nonlinear properties of the structure 

material was developed. 

2.The results obtained in a linearly elastic statement show that an account for physical nonlinearity 

leads to a decrease not only in the amplitudes of displacements, but also to an increase in the period of 

oscillations of a nonlinear elastic structure. 

3.It was determined that in order to obtain a nonlinear effect, not only the intensity is important, but 

also the frequency spectrum of the impact, causing sufficient strains to manifest the nonlinearity. 

4.If nonlinear elastic strain of the material is manifested in the structure, this leads to a decrease in the 

amplitudes of point displacements and to an increase in the period of oscillations under different 

kinematic influences. 
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