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Abstract. In this work, its application's theoretical and methodological 

foundations are developed for calculating the dynamic characteristics of 

shell structures that function independently or are parts of a complex 

mechanical system as a substructure. An important stage in the study of the 

dynamic behavior of the complex multiply connected shell structure under 

consideration is the determination of the dynamic characteristics of the 

structure, which include natural frequencies and modes of vibration, 

amplitude-phase frequency characteristics, dynamic coefficients of 

influence, dynamic stiffness and the coefficient of dynamicity. A solution 

method, an algorithm, and a program for calculating dynamic problems of 

structurally inhomogeneous shell systems have been developed. The 

developed method makes it possible to determine the dynamic 

characteristics of structurally inhomogeneous shell systems, numerical 

results are obtained, and graphs of the change in vibration frequencies 

depending on the inhomogeneity parameter are plotted. 

1 Introduction 
Due to the complexity of solving problems of statics and dynamics of complex, 

multiconnected, structurally inhomogeneous shell structures with viscoelastic bonds, the 

most acceptable is the creation of numerical calculation methods. At the same time, shell 

elements can be isotropic, orthotropic, multilayer, and structurally heterogeneous. 

It is known that there are quite a lot of published works devoted to the problem of 

calculating the dynamic characteristics of shells. The main part consists of works in which 

shells of a certain shape are studied, solutions are obtained, as a rule, using some variation 

method, and the shape of the cavity determines the choice of coordinate functions. In these 

works, approximate or exact formulas were obtained for several shells of a simple 

geometric shape. However, in practice, where the complexity of design solutions often 

makes it difficult to obtain analytical estimates and does not always allow the use of simple 
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models, the most valuable are universal numerical methods that do not impose strict 

restrictions on the shape and parameters of the researched structures.  

However, despite this, several issues remained unresolved for a long time. For example, 

there are unknown works in which vibrations of a complex shell structure would be studied. 

Only a few works deal with the oscillations of multiply connected shell systems. At the 

same time, in practice, for example, the shell structures of a very complex configuration are 

often found in products. Factors such as the variability of shell thickness, the presence of 

frames, and reinforcing ribs significantly complicate the development of simple models for 

analytical estimates and approximate calculations.  

All this caused the need to develop a simple and universal algorithm that allows you 

quickly perform the calculation, taking into account as many design features as possible.  

In this work, its application's theoretical and methodological foundations are developed 

for calculating the dynamic characteristics of shell structures that function independently or 

are parts of a complex mechanical system as a substructure.  

An important stage in the study of the dynamic behavior of the complex multiply 

connected shell structure under consideration is the determination of the dynamic 

characteristics included in the structure, which are the natural frequencies and the modes of 

vibration, the amplitude-phase frequency characteristics, the dynamic coefficients of 

influence of dynamic stiffness and the coefficient of dynamicity. Since obtaining, an 

analytical solution is impossible, the construction of numerical and numerical-analytical 

algorithms to use for the dynamic calculation of complex mechanical systems using modern 

computers is relevant. 

In article [1], the time domain has developed an efficient numerical algorithm for 

analyzing the dynamic response of orthotropic viscoelastic composite laminates. The 

integral form of the constitutive laws is exploited. The Generalized Wiechert model is 

adopted to simulate the viscoelasticity of the structure Mindlin-Reissner plate theory is 

utilized in finite element formulation employing the consistent mass matrix. The developed 

recurrence formula permits the new time solutions to be evaluated using only previous time 

values. The developed solution technique is applied to the orthotropic plate under two types 

of force: the step-pulse and sin-pulse force.  

This paper [2] presents a finite element formulation of a reduction method for dynamic 

buckling analysis of imperfection-sensitive shell structures. The reduction method uses a

perturbation approach, initially developed for static buckling and later extended to dynamic 

buckling analysis. Results of the reduction method are compared with results available in 

the literature. The results are also compared with full model finite element explicit dynamic 

analysis, and a reasonable agreement is obtained.

 Articles [3-4] investigate the oscillations and stability of an ideal round cylindrical shell 

subjected to axial harmonic excitation in the vicinity of the lowest natural frequencies. 

Donnell's theory of shallow shells is used, and the spatial discretization of the shell is 

obtained by the Ritz method. An efficient low-dimensional model presented in previous 

publications is used to discretize a continuous system. This paper's main goal is to discuss a 

conservative system's nonlinear behavior. Then the behavior of forced vibrations of a 

harmonically excited shell is analyzed. The results show that analyzing the evolution of 

secure links and obtaining the appropriate indicators of their stability is an important step in 

developing procedures for the secure design of multiply connected systems.

In articles [5-6], a new algorithm is developed for enforcing constraints within the 

framework of a nonlinear, flexible multibody system modeled with the finite element 

approach. The proposed algorithm exactly satisfies the constraints at the displacement and 

velocity levels. Furthermore, it achieves nonlinear unconditional stability by imposing the 

vanishing of the work done by the constraint forces when combined with specific 

discretizations of the inertial and elastic forces. 
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The article [7] presents a vibrational analysis of a freely supported rotating multilayer 

reinforced cylindrical shell. The stiffeners include rings and stringers. The equations are 

obtained by the Rayleigh-Ritz method and the Sander relations. The results are compared to 

those available from other sources to validate this method. The parameters of the shell and 

stiffeners are optimized by the genetic algorithm method under weight and frequency 

constraints. Stiffener shape, material properties, and shell dimensions have been optimized.

The article [8] analyzes free vibrations of rotating functionally main cylindrical shells 

with rectangular ribs. Based on the theory of the first approximation lava and the theory of 

smoothed hard means, the basic equations of motion are obtained, which take into account 

the influence of the initial hinge tension and the centrifugal and Coriolis forces. To confirm 

this analysis, comparisons are made with known results for specific cases. 

This paper [9] presents free vibrations of thick rotating reinforced composite cylindrical 

shells with different boundary conditions. The analysis is based on the three-dimensional 

theory using the layer-by-layer differential quadrature method. The equations of motion are 

derived using Hamilton's principle. This study demonstrates the applicability, accuracy, 

stability, and high convergence rate of the present method's analysis of free vibrations of 

rotating reinforced cylindrical shells. The presented results are compared with the results of 

other shell theories obtained by traditional methods. Some new results are presented that 

can be used as reference solutions for future research. 

The article [10] investigates the characteristics of free oscillations of a prestressed 

connected spherical, cylindrical shell with free-free boundary conditions. The Flügge shell 
theory and the Rayleigh-Ritz energy method are used to analyze the characteristics of free 

vibrations of a coupled shell. In the modal test, the LMS software calculates the combined 

shell structure's mode shapes and natural frequencies. Natural frequencies and mode shapes 

are calculated numerically and compared with those of the FEM and modal test to confirm 

the robustness of the analytical solution. The effect of shallow water and the length of a 

cylindrical shell on the behavior of free vibrations of the connected shell structure, as well 

as the effect of internal pressure on modal characteristics, is studied. 

The article [11] presents a general formulation for studying modal characteristics and 

the vibrational response of a cylindrical shell with a floor partition. The model is based on a 

variational formulation in which the structural connection is modeled using systems of 

artificial springs. To show the accuracy of the approach, the numerical results are carried 

out with particular attention to the characteristics of the hull-to-floor connection. 

Eigenfrequencies and modes of vibrations are determined. The results are compared with 

previous publications, as well as with the finite element method. The influence of 

individual artificial springs and floor movement in a plane on the modal characteristics is 

discussed. A forced reaction analysis illustrates the physical phenomena due to the 

connection between the hull and bottom. The results show the method's effectiveness when 

working with a wide range of structural bonds. 

The article [12 ] analyzes free and forced vibrations of stepped cylindrical shells with 

several intermediate flexible supports using vector signals with expansion in the Fourier 

series. Flexible support includes springs with arbitrary properties in any possible direction. 

Based on the Flügge theory of thin shells, the reflection, propagation, and transmission 
matrices for a round cylindrical shell are determined. Continuous vector-matrix 

dependencies are established for the analysis of free and forced vibrations, considering the 

thickness of the shell, shell pitches, and intermediate supports lengths. The results of this 

study are compared with the results of famous scientists obtained using the finite element 

method. For example, a cylindrical shell with three flexible intermediate supports and three 

geometric steps is considered. The natural frequency and vibration modes of the complex 

shell are derived. 
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In the article [13], the free oscillations of cylindrical shells with circumferential 

stiffeners, rings with a non-uniform eccentricity of the stiffeners and unequal spacing 

between the stiffeners, are investigated. The study uses analytical, experimental methods, 

and the finite element method. The Ritz method is applied in the analytical solution, and the 

stiffeners are considered discrete elements. In the experimental method, modal testing 

obtains modal parameters, including natural frequencies, waveforms, and damping. The 

ANSYS software uses two types of modeling, including shell elements. Analytical and 

numerical results are compared with experimental ones for the reliability of the developed 

algorithm and methodology for solving the problem. 

Articles [14-16] are devoted to studying the dynamics of structurally inhomogeneous, 

multiconnected shell structures, considering the influence of liquid and viscoelastic 

elements. A mathematical model of the structure has been developed based on the laws of 

mechanics and the Lagrange principle. The three-parameter Rzhanitsyn-Koltunov kernel 

was used as the relaxation kernel. 

In the articles [17-19], the spatial natural vibrations of high-rise smoke stacks of various 

thermal power plants and the ventilation stack of nuclear power plants according to the 

theory of shells in the elastic statement and viscoelastic statement using the developed 

methods and PC-IBM calculation programs. 

In calculations, a high-rise smokestack is modeled by an elastic axisymmetric shell of 

variable thickness with separate variable slopes of both internal and external surfaces that 

describe the real geometry of the structures. 

The reliability of the developed methods and algorithms was verified by solving several 

test problems and comparing the results obtained by known solutions and the results of 

field experiments. It was revealed that not only are the frequencies of bending modes of 

vibration in the dangerous range of earthquake frequencies, but also some other modes of 

spatial vibrations of structures, determined by the theory of shells. It was found that the 

value of the logarithmic decrement of structure vibrations when accounting for viscoelastic 

properties of the structure material weakly depends on eigenfrequencies of vibrations.  

Very little applied research has been conducted in this area, and some studies have been 

conducted on the study of oscillatory processes occurring in multilayer shell structures. 

Therefore, the development of algorithms and software products for calculating 

complex, structurally inhomogeneous shell structures that allow optimizing physical and 

mechanical characteristics is an urgent task of modern mechanics. Moreover, taking into 

account dissipative properties allows for a decrease in amplitude characteristics. Ultimately, 

it will be possible to control strength properties to create more stable, reliable structures.   

An important stage in studying the dynamic behavior of the complex multiconnected 

shell structure under consideration is the determination of the structure's dynamic 

characteristics, which include natural frequencies and waveforms, amplitude-phase 

frequency characteristics, dynamic stiffness coefficients, and dynamicity coefficients. 

Since it is impossible to obtain an analytical solution, the construction of numerical and 

numerical-analytical algorithms for the purpose of using complex mechanical systems for 

dynamic calculation using modern computers is an urgent task. 

2 Methods 
The adequacy of the original mathematical model (system of equations, variation principle) 

to the physical phenomenon under study is of great importance to obtain the correct result 

when using the numerical method. The possibility of neglecting the influence of individual 

factors in the mathematical model to simplify the solution procedure should be justified and 

the corresponding transformations should be performed correctly, without leading to 
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contradictions with physical laws. In the mathematical theory of viscoelasticity apparatus,

variation principles of dynamics are involved in formulating the problem �20-25�.
The most general linear theory, which most fully reflects almost all the features of the 

quasi-static and the dynamic behavior of viscoelastic materials, is the Boltzmann-Volterr's

theory, according to which the relationship between stresses and strains has the form: 

�(�) = �[�(�) − ∫ �(� −�
	 
)�(
)�
]                (1)

where ς is voltage, ε is deformation, t is observation time, 0≤τ≤t is intermediate moment. 

Instantaneous Yung's modulus, R is memory function or relaxation core. The type of the 

core R largely separates both the behavior of the material model and the possibility of using 

certain methods for solving problems for materials modeled using correlation (1). Suppose 

the function R has the form of an exponent or a sum of exponents. In that case, correlations 

(1) are reduced to differential correlations, the order of which is equal to the number of 

exponents in the indicated sum. Weakly singular heredities describe the behavior of 

viscoelastic materials most adequately. To solve the problems posed in this work, the core 

of M.A. Koltunov, Rzhanitsyna A.P.  was used �26-28�:


(� − 
) = �
��(���)
(���)∝��                                        (2)

which, on the one hand, very satisfactorily reflects both the quasi-static [29] and dynamic 

behavior of materials; on the other hand, it is most convenient when carrying out quasi-

static and, on the other hand, it is most convenient when carrying out quasi-static and 

dynamic calculations and determining mechanical vibrations.

In this work, the physical relations for the elements of structurally inhomogeneous shell 

structures, given in [30-32], are used as geometric relations.  

Let the shell element be composed of a certain number of orthotropic viscoelastic layers 

with significantly different rheological properties. The main directions of elasticity at each 

layer's point coincide with the directions of the coordinate lines α1, α2, and point Z, i.e., at 
each layer's point, one of the planes of elastic symmetry is parallel to the coordinate surface 

of the shelled element. The other two are perpendicular to the lines αi = const (i=1,2) [32]. 

It is believed that a structurally inhomogeneous shell element experiences small 

deformations, and the material of each of these elements has its own significantly different 

rheological properties.

The physical properties of the material of each layer, following the above, are described 

by linear hereditary of Boltzmann-Volterr's correlations with integral difference cores, 

subject to the closed cycle condition [20-22]. Note that for essentially inhomogeneous shell 

elements, when the heredity functions (1) of each viscoelastic layer are different, the 

assumption of the linearity of the process is justified and ultimately leads to insignificant 

calculation errors [31]. In this case, the integral terms in the hereditary correlations of the 

form (1) are usually small in comparison with the instantaneous elastic terms, which, 

together with the assumption of the oscillatory nature of the motion, makes it possible to 

apply the well-known [29] procedure of "freezing" the integral terms, which leads to the 

following complex physical relations [22].

Assuming that the normal stresses σzz in areas parallel to the coordinate surface of a thin 

shell element can be neglected in comparison with the stresses σ11 and σ22 in areas normal 

to this surface, the physical ratios of the material of the jth
layer can be described in the 

direction by complex values of the modulus of elasticity [32]:

Е��� = Е����
+�Е���� Е��� = Е���+�Е����

,                            (3)
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as well as the corresponding complex values of Poisson's coefficient:

��� = ν���
+�ν �!� ν�� = ν���

+�ν �!�
,                             (4)

According to [32], the relationship between stresses and strains for a shell element made 

of an orthotropic viscoelastic material can be represented as

"��(�) = ��1 − ���� #��� $1 − % ���(
)&'*+��
 + ����� $1 − % ���(
)&'*+�-�
.

	
/.

	
/0, 

"��(�) = ��1 − ���� #��� $1 − % ���(
)&'*+��
 + ����� $1 − % ���(
)&'*+�-�
.

	
/.

	
/0, 

"�� = 4���51 − ∫ �6(
)'*+� �
.
	 7���,              (5)

Introducing the notation:

��8 = ��(1 − Г��с + �Г��;)(1 ⇆ 2),                              (6)

?�� = ?�� ��Г�@сA'Г�@с
��Г��сA'Г��с, (1 ⇆ 2)4B = 4�(1 − Г6C + �Г6C)         (7)

We get:

"�� = Е�8
��D�D@ (��� + ��E ���); "�� = Е@8

��D�D@ (��� + ��E ���); "�� = 4B���. (8)

The quantities Г11c, Г11s, in relations (6-7) are the cosine and sine  of Fourier images of 

the core R(t):

Г��с = ∫ ���(
)GHIJ�.
K 
�
,   Г��с = ∫ ���(
)I�LJ�.

K 
�
 (9)

Г6C = ∫ �6(
)GHIJ�.
K 
�
,   Г6C = ∫ �6(
)I�LJ�.

K 
�
           (10)

Without imposing any restrictions on the type of cores R(t) yet, subjecting to the 

condition of a closed cycle, we introduce the forces and moments acting on the sites αi =
const: normal T11, T22 and shearing T12, T21 forces, bending M11, M22 moments. Next, the 

transition to complex arithmetic is carried out. Knowing the geometric and physical 

correlations, we can derive the basic dynamics equations. In this work, the derivation of 

equations is based on [32], the approach for both an elastic structure and a viscoelastic 

system. As applied to the case of small oscillations, the contact correlations are linearized at

approximately stationary values of the variable parameters.

The equations of natural oscillations of structures will have the form:

MN + JE�5OрQQQ7RN = 0  (T = 1, … , U;)                   (11)

M+' + JE�[4*]∆'+= W W XY''�; Z\^̂_;QQQQQ` a''�; + 
;�

W W XY''�; Z\Y^^_;QQQQQ` UY''�; = 0.
;�

  (12)
(� = 1, … U+)
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Values ω ̃*, at which the non-trivial solution is systemic complex coefficients, are the

complex values of the natural vibration frequencies of the considered structurally -

inhomogeneous shell structures. In more detail, let us dwell on the mathematical meaning 

of (11-12). In form, equation (11) is a contact equation of motion of multilayer elastic shells 

of the equation and prismatic shells of the non-circular section. Each of the equations 

describes the behavior of an individual shell element of a wall shell structure. In our case, 

the difference between the elemental equations is fundamental and lies in the fact that the 

solutions of the equations are complex due to the complexity of the relations, describing the 

structural heterogeneity. The complete ensemble of equations with complex coefficients 

(11), (12) describes the motion of a multiply connected structurally - inhomogeneous shell 

structure, composed in the general case from a set of multilayer elastic and viscous-elastic 

shells, hereditary bonds, frames with significantly different rheological properties, taking 

into account the joint work of all structural elements. No restrictions are imposed on this 

ensemble of equations, except for the subordination of the closed-loop condition for 

viscous-elastic elements and structural connections.

Further, in particular, the problem of vibrations of viscoelastic systems is reduced to a 

system of integro-differential equations (differential in coordinates and integro-differential 

in time). The system of equations contains partial derivatives in the case of systems with 

distributed parameters and ordinary derivatives in the case of systems with a finite number 

of degrees of freedom. Statements of problems of the theory of viscoelasticity as quasi-

static are presented with exhaustive completeness in the monographs [20-22].  

The dynamic problems with an infinite number of degrees of freedom with the help of 

an approximate method (Bubnov-Galerkin, Ritz, of finite elements) can be reduced to a 

system of a finite number of differential or integro-differential equations in time. From the 

point of view of mechanics, this means replacing a system with an infinite number of 

degrees of freedom with a system with lumped parameters or, at the same time, imposing 

an infinite set of additional constraints on the original system. In this way, most problems 

of the nonlinear and linear theory of viscoelasticity have been solved.  

The main difficulty along this path is the choice of the basis coordinate functions in 

which the desired solution is expanded. These functions are quite simple in the case of 

bodies of a simple shape (beams, plates, cylindrical shells, hollow cylinders of infinite 

length). For such objects, the vast majority of solutions known to us for dynamic 

viscoelasticity problems have been obtained. In the case of a body of a more or less 

complex shape, the choice of the system of basis coordinate functions of the projection 

method, which reduces the original system to a system with a finite number of degrees of 

freedom, is a difficult problem. 

3 Results and Discussion  
Based on the principle of modularity, an algorithm and a software package for determining 

natural oscillations have been developed. Following [31], we will compose the calculation 

system of a shell structure (Fig. 1), consisting of the shell (1-8), nodal (1-7), and bonds (4).
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Fig.1 Calculation scheme of the shell structure

Here, Ox is axis of rotation, z is shell element coordinates.

Consider an example. The problem for the elastic case was solved in [31]. Structurally 

inhomogeneous axisymmetric design - a two-cavity high-pressure tank consisting of 6 

shells and 6 nodal elements. Knots numbered No. 3, 5, 6 are circular frames, the cross 

sections of which have rectangular shapes with a size of 0.04m x 0.06m, the rest of the 

geometric dimensions are shown in fig.1. Node No. 6 of the structure is pinched, the shell 

elements No. 1, 4, 6, as well as frames are elastic (E = 2.10
11

N/m
2
; v =0.3; ρ=7.8∙102 kg⁄sm

3
.

The shell elements forming the inner cavity (No. 2, 3, 5) are viscous-elastic (ρ=7.8∙102

kg⁄sm
3
; v = 0.3). 

Their instantaneous modulus of elasticity - 1 was determined as a parameter of 

structural inhomogeneity and varied from E = 2.10
8

N/m
2

to E = 2.10
11

N/m
2
. The 

parameters of the core of relaxation of the material of these shell elements have the values 

A=0.01; α=0.1; β=0.05. The thickness of all shell elements is constant and equal to 0.01m. 

The work investigated the behavior of the defining damping coefficient of this design 

depending on the instantaneous modulus of elasticity of viscoelastic elements. 
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Fig.2. Plot of damping coefficients versus natural modes.

Fig. 2 shows the calculated dependences of the damping coefficients ωI1, ωI2, ωI3 of 3
rd

lower natural vibration modes determined by the operating conditions of the structure on 

the parameter of structural inhomogeneity - E. As well as in the previous case for a 

multiconnected shell structure, a synergism of dissipative properties was revealed.

Fig.3. Plot of natural frequencies versus respective damping factors.

Figure 3 shows the calculated dependences of natural frequencies, two of which ωR1 and 

ωR2, approximately the intersection point of the corresponding damping coefficients, also 

converge somewhat. The given calculation and analysis of the dynamics of this structure 

makes it possible already at the stage of preliminary design to provide the necessary 

characteristics of the dissipative properties of the latter required by the technical conditions 

and normal and the ability to dampen oscillations of the frequencies ωR1 and ωR2 specified 
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by the operating conditions. In this case, the construction provides the greatest energy 

dissipation with the instantaneous modulus of elasticity of viscoelastic elements E.

4 Conclusions
1. Based on the mathematical theory of visco-elasticity, variational principles of 

dynamics, and modern computational and asymptotic methods, the problem of 

calculating the dynamic characteristics (including VAT) of multiconnected structurally 

inhomogeneous axisymmetric shell structures is reduced to an effectively solvable 

mathematical problem for complex eigenvalues. 

2. With the help of the developed complex, numerical modeling and calculation of the 

dynamics of several shell structures with viscoelastic elements were carried out. 

3. The developed engineering methods and calculation algorithms are generalized to 

studies of the dynamics of multiconnected structurally inhomogeneous shell structures 

interacting with various environments.  

4. Numerical results are obtained, based on which graphs of changes in the frequencies of 

natural oscillations depending on the inhomogeneity parameter are constructed.  

5. It is established that the nature of the frequency change is increasing. 

6. Numerical experimental studies have shown satisfactory accuracy and convergence of 

the developed methods in solving problems of dynamics of structurally inhomogeneous 

shell structures. 
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