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Abstract The problem of spherical shock wave propagation in an elastic-plastic medium is 

solved analytically and numerically by the method of characteristics on the basis of the strain 

theory, including the generalized equations of state of the medium. The spherical shock wave 

propagation in an elastic-plastic medium with a more complex equation of state for the 

medium forming is studied. The results show that an account for nonlinear–elastic shock 

diagrams leads to an increase in circular stress wave compared to an elastic medium. It was 

found that the stress concentration is higher on the spherical cavity than on the cylindrical one. 

 

1. Introduction 

Recently, fast-running wave processes and as a result, the cases of intense short-term loads are often 

found in many fields of science and technology, in particular, in aircraft manufacturing, shipbuilding, 

rocket engineering, mechanical engineering, seismology and earthquake-resistant construction. In the 

practice of civil and industrial construction this is connected with the erection of various hydro-

technical and underground structures of spherical and cylindrical shapes in seismically dangerous 

zones, using an explosion in the mining, with predicting the strength of structures, machines, units and 

massifs subject to dynamic (including seismic and explosive) high-intensity impacts, and with the 

development of theoretical and experimental methods for calculating their stress-strain  states 

considering wave diffraction. 

In this case, a special place is occupied by the study of the wave interaction with a structure or a 

formation in the case when the structure (unit) and the environment undergo irreversible strains, i.e. 

when the stress–strain state of the system in question is, on the whole, beyond elasticity. In this case, 

to determine the dynamic loads from the above mentioned effects on various structures, it is necessary, 

first of all, to study the nonlinear waves propagation in the medium and its kinematic parameters, and 

then to study the processes of wave diffraction from the surface of structures considering the 

properties of the structure material. However, the problem under consideration is three-dimensional 

and non-stationary one, therefore, the methods for calculating underground structures on dynamic 

impacts due to the complexity of physical and mathematical properties of soil, the nature of seismic 

and explosive effects, the shape and geometry of structures have not yet been developed. However, 

from the simplified methods of studying this problem, the study of non-stationary processes can be 
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carried out in one- and two-dimensional statements. Some success has been achieved in this direction 

using a barrier of various shapes within the framework of the nonlinear theory of elasticity. Despite 

this, a limited number of publications are devoted to similar studies on elastic-plastic strains.  

In [10–13], the characteristics of a shock wave propagation caused by a gas detonation wave 

emerging from the open end of a cylindrical detonation tube were investigated experimentally. The 

results were obtained using dimensionless pressure and distance, which did not depend of the mixture 

diversity and pipe diameter. Based on the results of the studies, it was determined that an account of 

viscosity leads to wave attenuation. Subsequently, the shock wave attenuates more rapidly than the 

ideal sound attenuation, turning from a quasi-spherical wave to a spherical one. 

In [14–15], the propagation of a spherical wave in linear-elastic and viscoelastic media was studied. 

There, for modeling viscoelastic damping, a new model and a new approach to the analytical solution 

of the problem were developed. Wave propagation is achieved by cascading individual mechanisms of 

geometrical attenuation and viscoelastic attenuation. Comparison of the analytical model with the 

results of dynamic finite element modeling shows that the cascading method of individual transfer 

functions is an appropriate approach for the wave propagation in viscoelastic medium. 

Propagation of isolated spherical blast waves in the form of point explosions and gas explosions 

under high pressure were considered in [16-17]. The test data on the explosion overpressure as a result 

of interaction of spherical blast waves initiated from explosives in the form of cumulative charges of 

various strengths were presented. The results were discussed with the laws of scaling relating to the 

reduction of explosion overpressure and indicated the possibility of detecting a source explosion by 

pressure measurements in the far zone. 

In [18], modeling of soil fragmentation during underground explosions was studied and a modified 

smoothed particle hydrodynamics method (SPH) was introduced. To solve interphase problems with 

high density coefficients, a modified continuity equation was used. To describe the mechanical 

behavior of the, elastic and hypo-plastic constitutive models were used. The obtained simulation 

results were compared with experimental data, which showed that the smoothed particle 

hydrodynamics method SPH in combination with these two basic models can solve the problems of 

detonation of landmines associated with large strain. 

In [19-22], the methods for propagation damping of strong spherical waves were investigated and 

dynamic calculations of structures supported on a layer of a sand base subjected to explosive effects of 

soil were carried out. Numerical results show that the use of a sand base is effective in reducing the 

structural response and damage from ground movements caused by an explosion, both at high and 

relatively low frequencies, even though the effects of insulation tend to decrease with a decrease in 

fundamental frequency of ground motion. 

In this regard, in this paper, the one-dimensional and two-dimensional non-stationary problems of 

dynamic theory of plasticity are studied as applied to the calculation of medium parameters in the 

cases of wave propagation and deformation from a different surface, based on a deformation theory 

with more complex equations of state. 

 

2. Methods 

The problem of wave propagation in soil under the action of intense monotonically decreasing load  

     ) applied to the boundary of a cavity radius is considered. Soil at high stresses is modeled as an 

elastic-plastic medium considering the linear irreversible unloading of the medium. To describe the 

motion of a medium, a deformation theory [1]  is used with determining functions      ),    
     ), where ε, εi, σ, σi are the first and second invariants of the strain and stress tensors. 
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Figure 1. Change in the first and second invariants of the stress σ, σi and strain ε, εi  tensors 

 

These functions in the process of loading the medium are presented in the form of polynomials in 

which constant coefficients    , βi  (i = 1,2) are determined experimentally considering the triaxial 

stress state of soil.  

   )        | |)      )          )        (1) 

 

The solution to the problem is constructed analytically by the inverse method for a given surface 

shape of the shock wave in the form of a polynomial of the second degree with respect to time t and 

numerically by the method of characteristics for a given randomly decreasing load     ). Based on the 

obtained analytical formulas, the parameters of the medium are calculated on the computer, including 

the load profile and the comparison of stresses, mass velocity of plastic and elastoplastic medium. 

Let a monotonically decreasing load     ) be applied to the boundary of a spherical cavity     . 

In the case under consideration, the problem within the framework of the deformation theory of soil 

plasticity [3],  the equation of motion of the medium 
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From (5) at U=0    
  

  
    we have      √    
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where     is the velocity  of the elastic wave;   - variable wave velocity  

Research (4) shows that at     
 

  
  )   , according to the condition for the existence of a shock 

wave (4) (at the front of the shock wave the displacement is U = 0), a shock wave propagates in soil 

     ) (Fig. 2.) 
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Figure 2. Graph of shock wave propagation in 

soil r=R(t). 

Figure 3. Changes in the unloading wave 

    (r) at the boundary of the medium 

loading and unloading  

 

otherwise, at     
 

  
  )   , the centered Riemann loading waves, which are cut off from above by 

the unloading wave     (r), which is the boundary of the region of loading and unloading of the 

medium (Fig. 3.) 

Since the shock wave is a load-unloading wave and the medium is unloaded behind its front, then 

from (2), considering the unloading theorem of A.A. Ilyushin, expressed by the formula 
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Where,   ,   - tangents of the angles of inclination of the branches of rectilinear unloading of 

diagrams    )  and      )  , respectively with the axes   and   , U – is the displacement. Front 

parameters of the medium are indicated by an asterisk. 

Consider the case     
 

  
  )     In this case, the conditions at the wave front of the cavity 

boundary have the form                 
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As was said above, the solution to the problem is constructed in the reverse way, therefore, it is 

assumed that R(t) is given and in solution course, the load profile is determined using     ). Then 

    )  considering (3) at      ) takes the form: 
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Using the d'Alembert formulas, the solution of equation (7) can be represented as: 
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Where   and   are the unknown functions. 

Substituting (12) into (11) to determine the sought for functions   and   we obtain a system of 

ordinary differential equations of the form: 
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Further, considering that at the shock front r = R (t), displacement U (r, t) = 0 we get: 
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Substituting (14) and (15) and differentiating by   we have  
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After that, the solution of the problem regarding the displacement      )  considering (11) is 

written in the form: 
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where      ) - (i =1.2) is the root of the equation    )         relative to time t; 

   
 
  ) is a well-known function of its argument, expressed in terms of the parameters of the medium 

at the shock wave front. 

Differentiating the equation (18) by time t and r we determine the mass velocity   (r,t) and the 

strain      ), and then, based on formulas (6), the stress components         are calculated. Further, 

substituting (6) considering (18) into (10) we find the load profile     ). Note that the expressions are 

valid as long as     )    . In the future, in the case of      )   , it is necessary to solve the 

corresponding boundary value problems. 

 

3. Results and discussion  

To do this, we carry out the characteristics of AB, BC, CD, etc. Then, the region under consideration 

is divided into          (Fig. 2) regions, each of which for n   is limited by the characteristics of 

the positive, negative directions and the boundary of the cavity or part of the wave front       ). 

Solving problems for regions 2 and 3 (Fig. 2.), as well as for subsequent areas, can be obtained 

according to the methodology of work [5]. 

In addition, further studies show that the above inverse method becomes relatively effective in 

studying wave processes near the boundary of a spherical cavity, i.e. in the vicinity of the point        
t=0 in the plane     ) (Fig. 4). 

Indeed, in a sufficiently small time interval, varying the law of velocity change of the spherical 

wave  ̇  ) in time by the selection method, with a certain accuracy, we can achieve the specified law 

of time decay of the load     ). In this case, the wave pattern of the problem takes the form shown in 

Fig. 4. 

Considering that the solution to the problem for the form of region 1 (Fig. 4) was obtained above in 

the reverse way and the displacement of the medium in this region was calculated using formula (18), 

we proceed to the description of the solution to the problem for regions 2 and 3. 
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To find  
 
  )      

 
  ), we have the conditions 
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Therefore, substituting (22) and (23) into (20) considering (24), the displacement       )  is 

determined after differentiating (20) the velocity   
     )  and the strain components 

        )      
    )       ) including volume strain of soil in region 2. Further, formulas (6) make it 

possible to determine the components of soil stresses in region 2: 
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Proceed to solving the problem in region 3. We represent the solution of the equation (7) in region 

3 in the form 
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It should be noted that in [6], when studying the propagation of a one-dimensional plastic wave in 

soils, it was found that the front of the shock wave as a function of time is almost straight, although the 

parameters of the medium vary significantly. The curvature of the front in the considered time interval 

is approximately 15-20% of the initial state. Consider this circumstance and the finiteness of the length 

of section BD, in a first approximation, the ratios on the surface of the shock wave      )  are 

satisfied relative to the initial shape of the front corresponding to the point        ). 

Then we have: 
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where     )   
   )       )  is the displacement, velocity, and radial strain of the medium on the 

aircraft, determined from the solution of the problem in region 2. 

Expressions (26) and (27) with (20) allow to determine the required functions  
 
      ) , 
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   ) in region 3. Proceed to the solution of problems in the region 3. Solutions (7) 

of the region represented in the form: 
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where      
  

    )
)         ,  ,  ,   – are the arbitrary constant coefficients, determined from the 

conditions of problem (26) and (27) for           , i.e. at point B (Fig. 4) 

 

 
 

 

 
Figure 4. Change in a spherical shock wave in 

the vicinity of the point r =r0 

 

Figure 5. Change in stresses         of mass 

velocity Ut and load     )  at the boundary of the 

spherical cavity r=r0=1. 
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The calculations were carried out for the case when the surface shape of the shock wave, for the 

beginning of the wave process, is set in the form of a polynomial of the second degree  

   )          
  

 
)   where R (t)   , and initial parameters in the form (29) 

   
         

           )                          
 

   
  or     
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    )                                                                     

                                         
 

The results of computer calculations are presented in Figs. 5-8 in the form of graphs of stresses, 

mass velocity and load depending on time and spatial coordinate r, as well as on the shock front 

     ) . Here, the dashed and solid lines correspond respectively to an ideal nonlinearly 

compressible and elastoplastic media, and the results of the method characterizing the elastoplastic 

problem are indicated by a dashed line with points. Calculations at     considering relations (9) in 

the case of fulfilling the boundary condition. 

   (    )    (    )      )           

show that the shock wave velocity     )     for non-linearly compressible 7 and elastoplastic 

media is different and equal to        
 

   
 or     

 

   
, respectively. 

Consequently, the perturbation region of the elastoplastic medium becomes wider than the 

perturbation region of a nonlinearly compressible ideal medium. 

It can be seen from Fig.5 that in the case of soil modeling in a nonlinearly compressible medium, as 

compared to the elastoplastic problem, the load profile     ), found from the solution in the reverse 

way, changes relatively slowly in time. 

In addition, all medium parameters  at     , depending on time t, have a decaying character. A 

similar law of variation of the parameters       ,    ,       in time is observed at     . 

However, at     , the intensity of the above parameters is somewhat weaker than at     . The 

curves in Figs. 6-7 show that     ,   , depending on the spatial coordinate r at fixed moments of time 

                                  sec. excluding     of the elastoplastic medium (Fig. 7, the 

solid line) change, mainly according to the linear law. 

 

 

 
Figure 6. The change in pressure P =     and mass velocity city Ut, depending on the 

coordinate r at fixed times t = 0,15 ∙ 10 
-3

 sec (curve 1), 0.30 ∙ 10
-3

 sec (curve 2), 

0.45 ∙ 10
-3

 sec (curve 3).  
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The stress     calculated for an elastoplastic medium is the smallest in absolute value. The same 

picture occurs when the stresses    
 ,    

  and the mass velocity   
  along the wave front depending on 

time change (Fig. 8). In order to compare the results of similar and numerical methods on a computer, 

using the method of characteristics, we calculated the problem of wave propagation in soil for the load 

σо(t) previously obtained analytically by the inverse method (solid line in Fig. 5). Comparing the 

results of calculations on the distribution of the medium’s parameters along the shock wave front, we 

note that the results of the method of characteristics (dashed lines with circles in Fig. 8) satisfactorily 

coincide with the analytical solution of the problem. 

 

 

 
Figure 7. Change in radial stress -σ_rr and mass 

velocity depending on the coordinate t = 0.30.10 

sec for elastoplastic (solid) and ideal nonlinearly 

compressible plastic (dashed lines) medium  

Figure 8. Change in stresses    
 ,     

  and mass 

velocity Ut at the wave front as a function of time for 

elastoplastic (solid) and ideal non-compressible 

plastic (dashed lines) medium, ;dashed lines with 

circles are the results of the method of characteristics 

 

Thus, it should be noted that if the velocity of the shock front is a monotonically decreasing 

function of time, then all the parameters of the medium in the disturbance region, including the load 

profile at the cavity boundary, are also obtained by the damped function of time. The stress 

components and the mass velocity of the medium at the boundary of the cavity decrease faster over 
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time than at the wave front. In the study it was found that with an increase in coefficients         , 

  ,  , the stress components increase, and with an increase in Young's modulus,   ,   - they damp. 

However, the effect of    on the distribution of medium parameters is weaker than of    . 

 

4. Conclusions 

Based on the results of the studies, the following conclusions can be drawn: 

1. The problem of a spherical shock wave propagation in an elastoplastic medium is solved 

analytically and numerically by the method of characteristics on the basis of the deformation 

theory, taking into account the generalized equations of state of the medium. The study showed that 

for an elastic-plastic medium, a change in the values of Young's moduli E1 and E2 noticeably 

affects the profile σ0 (t).  

2. The propagation of a spherical shock wave in an elastoplastic medium with a more complex 

equation of state for medium forming σi =σi (ε, εi) was investigated by the inverse method. The 

calculation results showed that in this case the monotonically decreasing load profile σ0 (t) turns 

out to be steeper and faster decreasing in time than in the case σi = σi(εi) and substantially depends 

on the shape of the spherical load–unload shock wave. 

3. An analysis of the results of computer calculations shows that an account for nonlinear elastic 

shock diagrams σ(ε) at θ = π/2 leads to an increase in the circular stress wave     compared with 

an elastic medium with Young's modulus E calculated in tangent to the curve σ(ε) for ε → 0. If E is 

determined “by chord” of the curve σ(ε), then the value of     for θ = π/2 is the greatest. 

4. It was found that the stress concentration on the spherical cavity is higher than on the cylindrical 

one. Due to irreversible properties and complex equations of state of the medium, the stress 

distribution on the spherical cavity changes significantly, in contrast to the case of diffraction of an 

elastic wave on the cavity, and transient wave processes turn out to be long and complex in 

structure. 
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