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Abstract. The article provides a detailed analysis of well-known studies, 
which allow considering the work of the structure together with the base 
under dynamic influences, adequate replacement of an infinite base with a 
finite one using non-reflecting conditions on the boundary of the finite 
region, well-known methods for assessing the behavior of a structure under 
impact. A mathematical model, method, and algorithm were developed to 
evaluate the dynamic behavior of earth dams together with the base under 
shock impact using non-reflective conditions based on Rayleigh waves on 
the boundaries of the finite area of the base. To simulate a dynamic 

process, the principle of virtual displacements is used, taking into account 
the viscoelastic properties of the material. The solution to the problem is 
conducted by the finite element method and the Newmark method. The 
dynamic behavior of earth dams, together with the base, is studied, 
considering non-reflecting conditions under explosive impacts that arise 
not far from the structure. It was established that during the period of wave 
travel, a non-synchronous movement of individual parts of the dam occurs, 
damped due to the wave entrainment of energy and the viscoelastic 

properties of the material. It was revealed that the maximum principal 
stresses σ1 occur in the lower part of the upper slope of the dam and 
gradually spread along the entire dam; the maximum principal stresses σ2 
are reached near the foot of the dam and, as the wave propagates, they 
move along the base directly behind the wavefront; the maximum values of 
shear stress σ12 are reached on the surface of the upper slope, first at the 
foot of the dam, then over the entire surface of the slope. 

1 Introduction 

To evaluate the dynamic behavior of an earth dam under impacts occurring not far from the 

structure, it is necessary to consider it with the base of the structure. At that, for a single 

system of construction with a base, it becomes more difficult to solve the dynamic problem 

due to the infinite dimensions of the base. Therefore, for an adequate description of the 

dynamic processes in the structure-base system, selecting an equivalent model reflecting 

the real processes occurring in the base of such a system is necessary. In this article, for 

such a model, it is proposed to use a finite base model cut out of an infinite base, placing on 

fictitious (artificial) boundaries of the finite area that do not reflect the boundary conditions 
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based on the Rayleigh wave, which ensured the energy entrainment from the structure to 

infinity [1-3]. Therefore, this condition is often called wave entrainment of energy (or wave 

dissipation) since it ensures the entrainment of energy in the form of a wave from the 

structure to infinity. To avoid parasitic resonant phenomena, when solving specific dynamic 

problems, the viscoelastic properties of soil are taken into account; they provide internal 

dissipation both in structures and in bases [3]. 

There are several works that propose the use of non-reflecting conditions on the 

boundary of a finite region for the equivalent replacement of an infinite base with a finite 

one: 

-the study in [4] presents a comprehensive accuracy assessment of the calculation 

procedure related to the analysis of the response history of the dam, modeled as a system of 
finite elements, including the interaction of the dam with water and base. It is noted that the 

level of accuracy is achieved in the calculation procedure by considering the dam-base 

interaction and water absorption of the reservoir bottom on the dynamics of the system; 

- in [5], a direct formulation of the finite element method for the non-linear analysis of 

interacting dam-water-base systems during earthquakes is presented. When calculating the 

system, the absorption of a viscous damper is determined on the boundaries of a truncated 

area cut out from a semi-infinite fluid and basement rock. The effective earthquake forces 

are defined at these boundaries. The frequency response functions and transient responses 

of the idealized dam-water-base system are numerically calculated, and the results obtained 

are compared with the results obtained by the substructure method; 

- in [6], a simplified direct finite element (FE) method was used for non-linear analysis 

of the response history of semi-infinite dam-water-base systems. The analysis uses a 
standard absorbing viscous damper on finite region boundaries to simulate semi-infinite 

base and fluid regions. The seismic input as the effective earthquake forces determined 

from the control motion was defined on the base surface and at these boundaries; 

- in [7], the model of the global system of the Koina dam was created using the 

ABAQUS software, taking into account the interaction of the dam, reservoir, and base. 

Uncoupled and coupled models were compared concerning the horizontal displacement of 

the dam crest and the differential subsidence of the dam base on the clayey bed. Uncoupled 

model results determined overestimated predicted stability and damage detection in the 

dam. The modulus of elasticity of the clayey base was the decisive parameter determining 

the change in the differential subsidence of the dam base. When modeling the operation of 

the system, viscous dampers were used at the boundary of the clayey base; 
- in [8], when assessing the dynamic behavior of specific earth dams, the issue of the 

need to exclude waves reflected from the boundary of the finite area of the base was 

discussed; special conditions were used when solving specific problems; 

- in [9,10], using the condition that ensures the transmission of energy through the 

boundaries of the finite region of the base, three-dimensional non-linear problems of the 

structure dynamics were solved. The effectiveness of this condition was verified by 

comparison with the usual condition of a viscous boundary on the boundaries of a finite 

base region. 

- in [11], when solving dynamic problems by numerical simulation, an artificial 

boundary condition was used, which reduces wave reflections from the boundaries of the 

model. The absorbing characteristics of such a condition were evaluated using theoretical 

analysis and numerical experiments. 
- an approximate local operator was constructed in [12] for harmonic elastic waves. 

Exact operators were obtained using Fourier analysis for an elastic half-space. The 

approach's effectiveness was studied for various geometries of an obstacle at high 

frequencies. 

- in [13], an absorbing boundary condition for an acoustic wave was developed using 
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the method without a grid. When modeling the acoustic wave propagation by numerical 

method, artificial reflections from the model's edges should be avoided. Numerical 

experiments showed that the proposed method could provide a good effect in suppressing 

reflections from artificial model boundaries. 

-the study in[14] considers the seismic analysis of the dam-base system using the finite 

element method. To simulate a semi-infinite subgrade, a local non-reflective cone-type 

boundary condition was used. The results show the superiority of the proposed condition in 

absorbing the reflection of false waves over the traditional viscous boundary conditions. 

The fundamental work [15] analyzes published articles that use artificial boundary 

conditions on the boundary of a finite region and the results obtained in these articles. It 

also considers the problem of setting correct boundary conditions on the artificial 
boundaries of the computational domain, mathematical justification, analysis, and 

efficiency of using such conditions in solving specific problems. 

Along with this, there are publications [16-26] in which the dynamic behavior and wave 

phenomenon in various systems are studied, taking into account their design features and 

various properties of their material. 

Here is a review of only some of the works devoted to the problem of studying the 

dynamic behavior of the structure-base system using artificial non-reflective conditions on 

the boundary of the finite region of the base, which ensure the energy entrainment. 

Summing up this review, it should be noted that the problem of assessing the dynamic 

behavior of nonhomogeneous structures, together with the base, when solving dynamic 

problems under shock or explosive loads that arise near the structure, considering the 

energy entrainment from the structure to infinity and the dissipative properties of both the 
structure itself and its base are far from the final solution and present an urgent task. 

This work aims to develop a mathematical model, methods, and algorithms for 

assessing the dynamic behavior of a structure under explosive loads that appear near the 

structure and act on the base and to study the dynamics of specific structures under various 

impacts. 

Consider a plane inhomogeneous system consisting of an earth dam and a base (Fig. 1) 

located on an infinite deformable half-space (i.e., on a ground base). To simulate the 

dynamic processes occurring in the system under consideration under the impact, the finite 

region of volume V5 is cut with boundaries
  211 ,,  . Half-space material is assumed 

to be elastic or viscoelastic. 

The structure is inhomogeneous and occupies volume V1+ V2 + V3, the material of 

different parts of the system can be elastic and viscoelastic, and the physical properties of 

their components differ. The base occupies volume V4 and is elastic. At the boundary 

between the system elements (V1, V2, V3, V4, V5), there are continuous displacements, 

normal and tangential to the boundary surface stress components. A shock (explosive) load 

p


(t)acts on the system under consideration (Fig. 1) on the site p. The structure itself is 

massive, so the mass forces 

f are also considered in calculations. 

The task is to determine the dynamic behavior of the structure (Fig. 1) under the 

influence of shock (explosive) loads p


(t). 

The problems under consideration are posed for a finite region (Fig. 1) of volume 

V=V1+ V2 + V3 + V4+V5.   Here V5 is the volume of the region cut out from the half-space 

and bounded by surfaces.  
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Fig. 1. Calculation model of earth dam, bearing shock load at base. 

 

To describe the dynamic processes occurring in the system (Figure 1.), the principle of 

virtual displacements is used, according to which the sum of the work of all active forces, 

including inertia forces, on virtual displacements is zero, i.e.: 
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Then, to describe the physical properties of the body, the relations between the 

components of stress ij and strain ij  tensors of the form [27] are used: 

 

ijnijkknij  ~2
~

     (2) 

 

In the case when the material of the n-th element of the system is elastic, the quantities 
~
n  

and ~n  are the Lamé constants; if the material has viscoelastic properties, then 
n

~
 and 

n
~ are the Volterra integral operators and have the form [27]: 
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- the Cauchy relations are used that relate the components of the strain tensor 
ij  to the 

components of the displacement vector

u  [27]: 
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non-reflective conditions are used at the boundary of the finite region of the base [1-3]. 

 

2,1.0:

,0
1

:

2

1

1


















iux

t

u

cx

u
x

i

i

R

i





   

(5) 

 

and initial conditions are set at t = 0: 

 

:Vx );()0,( 2 xxu


 )0 xxu
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Condition (5) ensures energy transfer from the structure to infinity in the form of a 
Rayleigh wave through the boundaries of the finite region V5. 

Here:

u ,  ij ,  ij are the components of the displacement vector  21,uuu 


, strain 

and stress tensors, respectively; u


 , 
ij  are the isochronous variations of displacements 

and strains; n is the density of the material of the n-th element of the system; f


 is the 

vector of mass forces; p


is the vector of shock (explosive) loads; 
nn  , are the Lame 

constants; 
nn

ГГ  , are the relaxation kernels;  t  is an arbitrary time function; 
 
 2 3,

are the given coordinate functions; j is the direction cosines of the outer normal; 
Rc is 

the Rayleigh wave propagation in a half-space (considering viscoelastic properties of the 

base material, these quantities are complex quantities); n = 1,2,3,4,5 are the numbers of the 

system elements;  21, xxx 


  ;  i,j=1, 2.
.
 

Now, the variational problem of unsteady-state forced vibrations of the system under 

consideration (Fig. 1) is reduced to determining the displacement  txu ,


 and stress 

 txij ,


  fields in the structure under the mass forces 

f and shock impacts p


(t) satisfying 

equations (1) - (4) taking into account (5) and condition (6) at any virtual displacement u


 . 

2 Methods and algorithms 

The problem under consideration is solved [28] by the finite element method (FEM) with 

the partition of region V into various types of finite elements. In solving specific problems, 

the division of region V (Figure 1.) into finite elements is performed, taking into account 

the design features and physico-mechanical properties of the material of different system 

parts. 

Under short-term dynamic impacts (explosive ones), the unsteady-state forced 

vibrations arise in the system (Figure 1), the study of which allows us to determine the 

maximum values of displacements and stresses of the structure during the entire process of 
impact and to identify the most stressed sections in the system, taking into account various 
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inhomogeneous parameters of the material and design features of the structure. 

The problem of unsteady-state forced vibrations of a system (Figure. 1) using the FEM 

procedure is reduced to solving a system of linear integro-differential equations 
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(7) 

 

With initial conditions  
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Here [M], [K] are the matrices of mass and rigidity of the system;  C  is the matrix that 

takes into account the wave entrainment of energy;   tu  is the vector of the sought 

amplitudes of displacements;   tf  is the vector of dynamic load from explosive impacts; 

Г is the relaxation kernel;  F  is the total vector of static loads (mass forces, the 

hydrostatic pressure of water, etc.). 

The system of integro-differential equations (7) is solved under the initial conditions (8) 
by the Newmark method [28]. 

For this, the system of equations (7) under the initial conditions (8), at each time step

t , is reduced to solving the algebraic system of equations 
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in this case, the right-hand side 1iR  of equation (9) is determined using the expression 
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To solve the obtained system of algebraic equations (9), it is necessary to specify at the 

initial moment ( 0t ) the values of displacements {u0}, velocity  0u , and accelerations

}{ 0u . Normally }{ 0u =0 is set.  

The Newmark method is unconditionally stable if  25,025,0,5.0   . 

Thus, an algorithm that implements the Newmark method for solving the system of integro-

differential equations (7) with the initial condition (8) has the following form: 
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1. The initial values {u0},    0,0 ouu  are set. 

2. A system of algebraic equations (9) is formed with the right-hand side (11) - (12) 

describing elastic and viscous properties of the material of the system. 

3. The resulting algebraic system of equation (9) is solved by the Gaussian method or 

the square root method. 

A feature of the algorithm is that the integrals entering expression (12) of the vector 

{Wi+1} are calculated from the beginning of the process. In contrast, the integrals at each 

step are determined in the range from ti to ti+1. Moreover, the total value of {Wi+1} at time 

ti+1 is obtained by summing the value {Wi} saved in the previous step with the integral 

obtained at the last stage with the integration limits from  ti to ti+1. 

3 Results and discussion 

To verify the reliability of the developed algorithms and calculation program, the Newmark 

method was used to solve integro-differential equations [29] 
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 At initial conditions  
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And initial data, i.е., A.R.Rzhanitsyn kernel [30] 
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The system of integro-differential equations (13) under the initial conditions (14) has an 

exact solution
tey  . 

Table 1 compares solution results obtained with the developed algorithm at various 

values of t with exact solutions of equations (13) under initial conditions (14). 

Table 1. Solution of integro-differential equations 

Solution of 

integro-
differential 

equations. Time, 
t, s 

0.4 1.2 2.0 4.0 8.0 12.0 16.0 20.0 24.0 28.0 

The solution 
obtained by the 

Newmark 

method 

0.97 0.92 0.88 0.80 0.65 0.53 0.43 0.36 0.29 0.24 

Exact solution 0.98 0.94 0.90 0.81 0.67 0.54 0.44 0.36 0.30 0.24 
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A comparison of results presented in Table 1 shows that using the developed algorithm 

based on the Newmark method, the solution of integro-differential equations can be 

obtained with the desired accuracy. 

Using the above model and algorithm, the dynamic behavior of an inhomogeneous 

system (Fig. 1) was investigated in a plane statement. In this case, the ground base was 

considered an elastic one, and the structure was viscoelastic. The shock impact was taken as 

an external load, changing according to the following law:  
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The load Р(t) in kN is also plane and applied at a distance of 25 m from the dam foot on the 

base surface, i.e., at the site p  (Fig. 1). It is necessary to determine the fields of 

displacements and stresses in the dam body at various points in time arising under shock 

(explosive) loads (16). 

In calculations, it was accepted: 
-for the dam: height H = 168.0 m, the ratio of the upstream and downstream slopes 

m1=m2=2.2; crest width b=10.0 m; material properties: elastic modulus E = 3000.0 MPa; 

Poisson's ratio ν= 0.3; specific gravity of soil  = 2.2 tf/m3. In this case, A.R. Rzhanitsyn 

kernel was used (15) to consider soil's viscoelastic properties. The parameters ,,A  of 

the kernel (15) for various soils were determined in [31] (from experimental data using the 

technique [27]) and taken in the form: A = 0.0146; α = 0.2; β = 0.0000057. 

-for the ground base of the structure, material properties are elastic modulus E = 3600.0 

MPa; Poisson's ratio ν= 0.3; specific gravity of soil  = 2.8 tf /m3. 

The solution to this problem at the set parameters revealed that the load P(t) arising 

from the impact creates a non-uniform wave field of displacements in the dam body. The 

beginning of motion of each point of the structure corresponds to the time of the wavefront 

approach to it, determined by the distance of the point from the load application point and 

the wave propagation in soil. 

The results show that various structure points do not enter into motion simultaneously. 

The beginning of each point motion corresponds to the time of the blast wave front 

approach to it. This time is uniquely determined by the distance of the point from the 

explosion source and the wave propagation in the soil. 
Figure 2 shows the isolines of the horizontal displacement distribution in the dam cross-

section at different points in time. The wave generated by explosive load, located relative to 

the dam foot, passing along the ground base first causes a displacement in the foot of the 

upper slope (Figure 2a) and eventually covers more distant areas of the structure (Figure 2. 

c, d). In this case, the lower region of the upstream slope, bounded by isoline "1", remains 

stationary due to wave diffraction at the base–slope junction. The isoline with the same 

index on the lower slope (Figure 2b) corresponds to the position of the wavefront, in front 

of which there is an undisturbed (at t = 0.46 sec) area of the dam (the right side of the 

figure). At subsequent points in time, the disturbance from the explosive load P(t) 

completely covers the dam body, and the horizontal displacement distribution in it is 

represented by isolines in Figures 2a-d. After the wave propagation, the strained state of the 

dam gradually stabilizes. 
The values of horizontal displacements on isolines (Figure 2.) increase at an equal 

interval of 0.005 m beginning from 0.0 m - isoline "1". The maximum displacements are 

0.042 m and are observed in the area bounded by the line with the index "9"; the 
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displacement in the line is 4 cm. 

 

a) 

 

b) 

 

c) 

 

d) 

 
 

Fig. 2. Isolines of horizontal displacements (m) distribution in the dam cross section at different 
points in time t: (a) 0.2 s, (b) 0.32 s, (c) - 0.52s, (d) - 0.60s 

 

The stress state of the dam, represented by the principal stresses (σ1) at various points in 

time: at the beginning, in the middle, and at the end of the process, is shown in Fig. 3. The 

stress dimension is MPa. 
At the initial time of the process, the lower part of the dam upstream slope is deformed, 

and a tension zone with positive stresses σ1 appears (line "2" in Fig. 3, a), which spreads up 

the slope as the wave propagates (Fig. 3b, c ) and to the entire internal region of the dam 

(Fig. 3c, d). The magnitude of the stresses σ1 on the isolines (Fig. 3) varies with the same 

step of 0.05 MPa: from 0.0 MPa - on the line "1" to 0.3 MPa - on the line "6". 

 

Fig. 3. Isolines of distribution of principal stresses σ1 in the dam cross section at different  points in 
time t: (a) 0.2s, (b) 0.32s, (c) 0.52s, and (d) 0.60s 

 

The maximum tangential stresses (σ12) arise on the surface of the upstream slope (Figure 

4.): first, at its foot and then along the entire height; this is fraught with the possibility of a 

landslide on the slope (Figure 4.). 

 

а) 

 

b)              

 

c) 

 

d) 
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а) 

 

b) 

 

c) 

 

d) 

 

Fig. 4. Isolines of distribution of tangential stresses σ12 in the dam cross-section at different points in 
t: (a) 0.2s, (b) 0.32s, (c) 0.52s, and (d) 0.60s. 

 

The values of tangential stresses σ12 at the isolines (Figure 4.) vary with a step of ± 0.025 

MPa from 0.0 MPa on the line "5" to ± 0.1 MPa on the lines "1" and "9". 

4 Conclusion 

1. A mathematical model, method, and algorithm were developed for assessing the 

dynamic behavior of a structure together with the foundation, taking into account internal 
dissipation based on a linear hereditary model of viscoelasticity and wave entrainment of 

energy using non-reflective conditions at the boundary of the finite area of the ground base. 

2. To assess the method's reliability, a test problem was solved, and the results were 

compared with the exact solution of integro-differential equations. 

3. The study of the dynamic behavior of the structure together with the base under shock 

(explosive) impacts using wave entrainment of energy through the boundary of the finite 

area of the base showed that: 

-maximum principal stresses σ1 arising in the lower part of the upper 

the slope gradually spread to the entire slope and the central area of the dam; 

-maximum principal stresses σ2 are reached near the foot of the dam 

and as the waves propagate, they move along the base immediately behind the 
wavefront; 

-maximum values of tangential stresses σ12 are achieved at the 

surface of the upper slope, first at the foot of the dam, then along the entire slope's 

surface. There are no shear stresses in the center of the dam; 

-during the period of wave passage in the dam, the symmetrical stress distribution is 

disturbed; 

-there is a non-synchronous movement of the parts of the dam, damped due to the wave 

entrainment of energy (wave dissipation) and viscoelastic properties (internal dissipation) 

of the material in the system under consideration. 
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