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Abstract. This article is devoted to solving urgent problems related to the development of a 
mathematical model and methods for assessing the dynamic characteristics of railway 
wheelsets. In the simulation, railroad wheelsets are considered as a one-dimensional 
deformable body based on the Bernoulli-Euler theory with two rigid disks. The cross-section 
of the shaft is assumed flat and perpendicular to the centerline during vibration. Disks are 
modeled as a rigid body characterized by mass and moment of inertia. The centrifugal and 
gyroscopic effects and the damping properties of the material are taken into account. With 
these factors, the problem under consideration is reduced to a higher order of a homogeneous 
system of differential equations, which is then solved using the Altair Hyperworks and Matlab 
software. The dynamic characteristics of railway wheelsets are investigated depending on the 
angular speed of the wheel (without taking into account the contact between the wheelset and 
the rail), with and without damping. At that, a number of new mechanical effects were 
established. 
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1. Introduction  
The study of the dynamic processes of various systems begins with the determination of 
dynamic characteristics, i.e., the determination of eigenfrequencies and corresponding 
vibration modes of the system. One of the main dynamic indices of rotating systems is the 
determination of eigenfrequencies and modes of vibration of the systems under consideration. 
The dynamic characteristics include eigenfrequencies, modes, and decrements of the system 
oscillations. Generally, dynamic characteristics are a passport of the system, which allows one 
to preliminarily estimate the dynamic properties of the system. Until recently, the 
determination of the dynamic characteristics of complex systems created a number of 
difficulties. 

In recent years, significant advances in numerical modeling and computation of 
eigenfrequencies and modes of wave vibrations have greatly simplified design in all spheres 
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of industry. However, at present time, the determination of dynamic characteristics and the 
prediction of dynamic properties of various systems are still complicated tasks and issues. 

As is well known, the dynamic characteristics depend on the physical and geometric 
parameters of the system and determine the pattern of structural vibrations under various 
operating loads. Any strain in a linear structural system can be expressed as a linear 
combination of structural forms that set up an orthonormal vector base. 

The results of dynamic analysis of the system are used in a variety of numerical 
simulation applications, including vibration sensitivity calculations, root cause analysis of 
induced vibrations, damage detection; they are used to provide flexibility in the analysis of a 
system of various bodies, to speed up calculations of durability and vibroacoustic properties. 
The results of evaluating these parameters of the system make it possible to efficiently 
calculate changes in the structure response to various impacts. 

Classical monographs [1-4] describe the modeling of rotors, considering the disks as 
rigid bodies with their mass and moments of inertia. 

In [5], the latest advances in the dynamic characteristics of the curve matching between 
the wheel and the rail were discussed. For modern railways, a framework and methodology 
were proposed that correspond to the characteristics of the dynamic interaction of a wheel and 
a rail on a curved track. 

In [6], the setting up of a model was considered, intended to simulate the prediction of 
maximum dynamic torsional stresses to check the stability of railway wheelsets. That model 
assumed that vibration excitation comes from the wheel-rail contact point and that the 
vibration energy comes from the high-frequency drive control. 

The study in [7] investigated the dynamic response of a wheel and a rail in the process 
of rolling contact for high-speed trains using the finite element method. The influence of the 
train speed on the wheel-rail contact forces was considered. The simulation results showed 
that the lateral and longitudinal wheel-rail contact forces are less than the corresponding 
vertical contact forces, and they appear to be insensitive to train speed. 

In [8], two modeling methods were presented to analyze the dynamics of flexible 
wheelsets. The kinematics of the wheel profile is described taking into account the flexible 
displacements of the wheelset units. The Lagrange approach was used in modeling, to obtain 
all the terms of the equation of motion, including the inertial forces, and the Euler approach 
was used at the stage of integrating the equation of motion. A non-rotating finite element 
mesh of a wheelset was considered using the interpolation of flexible displacements at the 
nodes. 

In [9], the model of flexible shafts was adapted to simulate a railroad wheelset. The 
dynamic properties of a rigid body were obtained from a rigid-body finite element model of a 
real wheelset. The model used the Euler axes set for numerical calculations. The results show 
that the gyroscopic effect can contribute to the determination of the wavelength fixing 
mechanism in some corrugation problems, even if the train speed is low. 

In [10], the vertical dynamic interaction of a train and a track at high speeds of vehicle 
motion was investigated. The inertial effects caused by the rotation of the wheels were taken 
into account in the vehicle model by implementing the model of structural dynamics of the 
rotating wheelset. To test the model of train-to-rail interaction, the calculated contact forces 
were compared with the contact forces measured with an instrumental wheelset. It was stated 
that when the system was excited at a frequency at which two different wheelset modes (due 
to wheel rotation) have the same resonant frequencies, significant differences were found in 
the contact forces calculated using the models of rotating and non-rotating wheelset. 

In [11], an analysis and comparison of the Hopf bifurcation behavior of a two-axle 
railway bogie and a double wheelset in the presence of nonlinearities in the form of damping 
forces in the longitudinal suspension system and a heuristic model of the creep of the wheel-
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rail contact, including the gap clearance in the dead surface, when moving along a curved 
track were presented. Frequency power spectra at critical speeds, in subcritical and 
supercritical bifurcations, were presented by comparing a two-axle bogie and a model with 
two wheelsets. Along with this, in [12,20], special attention was paid to mathematical 
modeling of the dynamics of rotor systems, and in [13-19] – to the modeling of the dynamics 
of flexible rotors and a numerical method for solving the equation of motion of a rotor system 
with supports. A special elastic finite element was used to solve the problem [21]. 

It should also be noted that the determination of the dynamic characteristics of various 
structures [22-26], along with the rotating elements of machines, plays a certain role in 
predicting the dynamic behavior of these structures. 

In the above studies, each approach and method has its own advantages and 
disadvantages. Despite this, they all are applied in solving various practical problems. 

From the review of the above studies, one can notice the incompleteness of research, 
especially in the field of accounting for the gyroscopic effect and internal damping when 
determining the dynamic characteristics of rotating shafts with disks. 

Therefore, this article is devoted to the development of mathematical models for 
assessing dynamic processes in deformable shafts with a rigid disk, taking into account the 
gyroscopic effect and internal damping, as well as determining their dynamic characteristics, 
which is a relevant problem at present. 

 
2. Methods 
Simulation of dynamic processes on a rotating shaft. An element (of the finite element 
model) is considered, isolated from a circular section shaft (Fig. 1) of length 𝑙𝑙 with the 
beginning of the node 𝐴𝐴 and the end 𝐵𝐵. The deformations of the element at any point 𝑥𝑥 are 
described by deflections 𝑢𝑢(𝑥𝑥) (in the 𝑥𝑥 direction), 𝑣𝑣(𝑥𝑥) (in the 𝑦𝑦 direction), 𝑤𝑤(𝑥𝑥) (in the 𝑧𝑧 
direction), the Euler angles of rotation of the section plane 𝜗𝜗(𝑥𝑥), 𝜓𝜓(𝑥𝑥) and torsional rotation 
𝜑𝜑(𝑥𝑥). It is assumed that the section plane 𝜂𝜂𝜂𝜂 after straining remains perpendicular to the axis 
of the deformed shaft. 

To obtain the corresponding finite element matrices, the kinetic and potential energies 
of the shaft element are used and then substituted into the Lagrange equation. In this case, to 
determine the kinetic energy, it is necessary to determine the velocity of the material point of 
the shaft element, located at a distance 𝑥𝑥 from the origin. 

When using the expansion of the basic motion at the point 𝑆𝑆 (i.e., at the center of mass), 
of an element of length 𝑑𝑑𝑑𝑑 (Fig. 1), the speed of the sliding motion in the 𝑥𝑥𝑥𝑥𝑥𝑥 coordinates is 

𝒗𝒗(𝑥𝑥) = �
𝑢̇𝑢(𝑥𝑥)

𝑣̇𝑣(𝑥𝑥) + 𝑤𝑤 ∙ 𝜔𝜔0
𝑤̇𝑤(𝑥𝑥) + 𝜐𝜐 ∙ 𝜔𝜔0

�. (1) 

The instantaneous angular velocity of the relative spherical motion about the 𝑋𝑋𝑋𝑋𝑋𝑋 
coordinate system, taking into account the small strain angles 𝜗𝜗(𝑥𝑥) and 𝜓𝜓(𝑥𝑥), is described in 
the 𝜉𝜉𝜉𝜉𝜉𝜉 coordinates, i.e.: 

𝝎𝝎(𝑥𝑥) = �
𝜔𝜔0 + 𝜑̇𝜑

−𝜔𝜔0𝜓𝜓 + 𝜗̇𝜗
−𝜔𝜔0𝜗𝜗 + 𝜓̇𝜓

�. (2) 

The kinetic energy of the 𝑒𝑒-th finite element of the shaft is determined by the sum: 
𝐸𝐸𝑘𝑘

(𝑒𝑒) = 𝐸𝐸𝑘𝑘 pos
(𝑒𝑒) + 𝐸𝐸𝑘𝑘 sfer

(𝑒𝑒) , (3) 
where 𝐸𝐸𝑘𝑘 pos

(𝑒𝑒)  is the kinetic energy from the sliding motion, and 𝐸𝐸𝑘𝑘 sfer
(𝑒𝑒)  is the kinetic energy 

from the spherical motion. These energies are determined by integration over the length of the 
element, i.e.: 
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𝐸𝐸𝑘𝑘 pos
(𝑒𝑒) = 1

2 ∫ 𝐴𝐴𝑙𝑙0 (𝑥𝑥)𝒗𝒗(𝑥𝑥)𝑇𝑇𝒗𝒗(𝑥𝑥)𝜌𝜌𝜌𝜌𝜌𝜌, 𝐸𝐸𝑘𝑘 sfer
(𝑒𝑒) = 1

2 ∫ 𝝎𝝎𝑇𝑇(𝑥𝑥)𝑙𝑙
0 𝑱𝑱(𝑥𝑥)𝝎𝝎(𝑥𝑥)𝜌𝜌d𝑥𝑥, (4) 

where 𝐴𝐴(𝑥𝑥) is the cross-sectional area, ρ is the density of the material, and  
𝑱𝑱(𝑥𝑥) = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 �𝐽𝐽𝑝𝑝(𝑥𝑥), 𝐽𝐽(𝑥𝑥), 𝐽𝐽(𝑥𝑥)� is a diagonal matrix defined in terms of polar 𝐽𝐽𝑝𝑝(𝑥𝑥) and 
quadratic 𝐽𝐽(𝑥𝑥) moments of the shaft section. Substituting relations (1) - (2) into (4), we 
obtain: 
𝐸𝐸𝑘𝑘 pos

(𝑒𝑒) = 1
2 ∫ 𝐴𝐴𝑙𝑙0 (𝑥𝑥)�𝑢̇𝑢2 (𝑥𝑥) + 𝑣̇𝑣2 (𝑥𝑥) + 𝑤̇𝑤2 (𝑥𝑥)−2 𝑣̇𝑣 (𝑥𝑥)𝜔𝜔0𝑤𝑤(𝑥𝑥) + 2 𝑤̇𝑤 (𝑥𝑥)𝜔𝜔0𝑣𝑣(𝑥𝑥) +

                +�𝑤𝑤2(𝑥𝑥) + 𝑣𝑣2(𝑥𝑥)�𝜔𝜔0
2�𝜌𝜌d𝑥𝑥,  

𝐸𝐸𝑘𝑘 sfer
(𝑒𝑒) = 1

2 ∫ �𝐽𝐽𝑝𝑝(𝑥𝑥) �𝜔𝜔0
2 + 2𝜔𝜔0 𝜑̇𝜑 (𝑥𝑥) + 𝜑̇𝜑2 (𝑥𝑥)� + 𝐽𝐽(𝑥𝑥) �𝜔𝜔0

2𝜓𝜓2(𝑥𝑥) − 2𝜔𝜔0𝜓𝜓(𝑥𝑥) 𝜗̇𝜗 (𝑥𝑥) +𝑙𝑙
0

                + 𝜗̇𝜗2 (𝑥𝑥)� + 𝐽𝐽(𝑥𝑥) �𝜔𝜔0
2𝜗𝜗2(𝑥𝑥) + 2𝜔𝜔0𝜗𝜗(𝑥𝑥) 𝜓̇𝜓 (𝑥𝑥) + 𝜓̇𝜓2 (𝑥𝑥)�� 𝜌𝜌d𝑥𝑥. (5) 

The potential energy of the strained 𝑒𝑒-th finite element of the shaft is determined as: 
𝐸𝐸𝑝𝑝

(𝑒𝑒) = 1
2 ∫ ∫ �𝐸𝐸𝜀𝜀𝑥𝑥2(𝑥𝑥) + 𝐺𝐺 �𝛾𝛾𝑥𝑥𝑥𝑥2 (𝑥𝑥) + 𝛾𝛾𝑥𝑥𝑥𝑥2 (𝑥𝑥)���𝐴𝐴(𝑥𝑥)�

𝑙𝑙
0 𝑑𝑑𝑑𝑑(𝑥𝑥)𝑑𝑑𝑑𝑑, (6) 

where 𝐸𝐸 is the tensile modulus and 𝐺𝐺 is the shear elastic modulus of the material. 
Assuming the incompressibility of the cross-section of the shaft, we can determine the 

components of the displacement vector of an arbitrary point of the shaft relative to  
𝜓𝜓(𝑥𝑥) = 𝑣𝑣′(𝑥𝑥), 𝜗𝜗(𝑥𝑥) = −𝑤𝑤′(𝑥𝑥), i.е.: 
𝜀𝜀𝑥𝑥 = 𝑢𝑢′(𝑥𝑥) − 𝑦𝑦𝑣𝑣″(𝑥𝑥) − 𝑧𝑧𝑤𝑤″(𝑥𝑥),𝛾𝛾𝑥𝑥𝑥𝑥 = −𝑧𝑧𝜑𝜑′(𝑥𝑥),𝛾𝛾𝑥𝑥𝑥𝑥 = 𝑦𝑦𝜑𝜑′(𝑥𝑥). (7) 

Substitution of (7) into the expression for potential energy (6) results in: 
𝐸𝐸𝑝𝑝

(𝑒𝑒) = 1
2 ∫ ∫ �𝐸𝐸�𝑢𝑢′(𝑥𝑥) − 𝑦𝑦𝑣𝑣″(𝑥𝑥) − 𝑧𝑧𝑤𝑤″(𝑥𝑥)�

2
+ 𝐺𝐺𝐺𝐺′2(𝑥𝑥)(𝑦𝑦2 + 𝑧𝑧2)��𝐴𝐴(𝑥𝑥)�

𝑙𝑙
0 d𝐴𝐴(𝑥𝑥)d𝑥𝑥. (8) 

 

 
 

Fig.1. Scheme of the 𝑒𝑒-th finite element detailed from the circular section shaft 
 
The components of the displacement vector inside the 𝑒𝑒-th finite element of the shaft 

are approximated by a linear and cubic function (a polynomial), i.e.: 
𝑣𝑣(𝑥𝑥) =  𝜱𝜱(𝑥𝑥)𝒄𝒄1, 𝜓𝜓(𝑥𝑥) =  𝜐𝜐′(𝑥𝑥) =  𝚽𝚽′(𝑥𝑥)𝒄𝒄1, 𝑢𝑢(𝑥𝑥) =  𝜳𝜳(𝑥𝑥)𝒄𝒄3, 𝜑𝜑(𝑥𝑥) =  𝜳𝜳(𝑥𝑥)𝒄𝒄4, 
𝑤𝑤(𝑥𝑥) =  𝜱𝜱(𝑥𝑥)𝒄𝒄2, 𝜗𝜗(𝑥𝑥) =  −𝑤𝑤′(𝑥𝑥)  =  −𝚽𝚽′(𝑥𝑥)𝒄𝒄2, 𝜱𝜱(𝑥𝑥) = [1 𝑥𝑥 𝑥𝑥2 𝑥𝑥3],𝜳𝜳(𝑥𝑥) = [1 𝑥𝑥]. (9) 
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To describe the strained state of the 𝑒𝑒-th finite element of the shaft in the 𝑥𝑥𝑥𝑥𝑥𝑥 
coordinate system, we use the vector of generalized displacements of the nodes 𝐴𝐴 (for  
𝑥𝑥 =  0) and 𝐵𝐵 (for 𝑥𝑥 =  𝑙𝑙) 
𝒒𝒒�(𝑒𝑒)  =  [𝒒𝒒1𝑇𝑇𝒒𝒒2𝑇𝑇𝒒𝒒3𝑇𝑇𝒒𝒒4𝑇𝑇]𝑇𝑇, (10) 
where 

𝒒𝒒1 =

⎣
⎢
⎢
⎡
𝑣𝑣(0)
𝜓𝜓(0)
𝑣𝑣(𝑥𝑥)
𝜓𝜓(𝑥𝑥)⎦

⎥
⎥
⎤

, 𝒒𝒒2 = �

𝑤𝑤(0)
𝜗𝜗(0)
𝑤𝑤(𝑥𝑥)
𝜗𝜗(𝑥𝑥)

� ,   𝒒𝒒3 = �𝑢𝑢(0)
𝑢𝑢(𝑙𝑙)� , 𝒒𝒒4 = �𝜑𝜑

(0)
𝜑𝜑(𝑙𝑙)�. (11) 

Using approximation relations (9) for the end nodes A and B of the shaft, we obtain 
𝒒𝒒𝑖𝑖  =  𝑺𝑺𝑖𝑖𝒄𝒄𝑖𝑖 , 𝑖𝑖 =  1,2,3,4, (12) 

where 𝑺𝑺1 = �

1 0 0 0
0 1 0 0
1 𝑙𝑙 𝑙𝑙2 𝑙𝑙3
0 1 2𝑙𝑙 3𝑙𝑙2

�,  𝑺𝑺2 = �

1    0   0   0
0 −1   0   0
1    𝑙𝑙    𝑙𝑙2    𝑙𝑙3
0 −1 −2𝑙𝑙 −3𝑙𝑙2

�,  𝑺𝑺3 = �1 0
1 𝑙𝑙 �. (13) 

Eliminating the unknown vectors 𝒄𝒄𝑖𝑖 of the coefficient of approximating functions (12), 
we obtain approximation relations connecting the components of the displacement and strain 
vector through the generalized displacements of the nodes, i.e.: 
𝒖𝒖(𝑥𝑥) =  𝜳𝜳(𝑥𝑥)𝑺𝑺3−1𝒒𝒒3,𝒗𝒗(𝑥𝑥) =  𝜱𝜱(𝑥𝑥)𝑺𝑺1−1𝒒𝒒1,𝒘𝒘(𝑥𝑥) =  𝜱𝜱(𝑥𝑥)𝑺𝑺2−1𝒒𝒒2,   
𝝍𝝍(𝑥𝑥) = 𝜱𝜱′(𝑥𝑥)𝑺𝑺1−1𝒒𝒒1,𝝑𝝑(𝑥𝑥) = −𝜱𝜱′(𝑥𝑥)𝑺𝑺2−1𝒒𝒒2,𝝋𝝋(𝑥𝑥) = 𝜳𝜳(𝑥𝑥)𝑺𝑺3−1𝒒𝒒4.  (14) 

The kinetic (5) and potential energy (8) of the 𝑒𝑒-th finite element of the shaft can be 
rewritten in matrix form using the approximation relations (14) 

𝐸𝐸𝑘𝑘
(𝑒𝑒) =

1
2
�𝒒𝒒�(𝑒𝑒)̇ �

𝑇𝑇
𝑴𝑴� (𝑒𝑒)𝒒𝒒�(𝑒𝑒)̇  + 𝜔𝜔0 �𝒒𝒒�(𝑒𝑒)̇ �

𝑇𝑇
𝑪𝑪�(𝑒𝑒)𝒒𝒒�(𝑒𝑒) +

1
2
𝜔𝜔0
2�𝒒𝒒�(𝑒𝑒)�

𝑇𝑇
𝑲𝑲�𝑑𝑑

(𝑒𝑒)𝒒𝒒�(𝑒𝑒) + 

+𝜔𝜔0 �𝒒𝒒�(𝑒𝑒)̇ �
𝑇𝑇
𝒇𝒇�1

(𝑒𝑒) + 1
2
𝜔𝜔0
2𝐼𝐼(𝑒𝑒),      𝐸𝐸𝑝𝑝

(𝑒𝑒) = 1
2
�𝒒𝒒�(𝑒𝑒)�

𝑇𝑇
𝑲𝑲�𝑠𝑠

(𝑒𝑒)𝒒𝒒�(𝑒𝑒), (15) 

where 𝑴𝑴� (𝑒𝑒) is the mass matrix, 𝑪𝑪�(𝑒𝑒) is the Coriolis matrix, 𝑲𝑲�𝑑𝑑
(𝑒𝑒) is the reduced rotation 

matrix, 𝒇𝒇�1
(𝑒𝑒) is the vector of gyroscopic forces, acting on the 𝑒𝑒-th finite element, 𝑲𝑲�𝑠𝑠

(𝑒𝑒) is the 
static stiffness matrix and 𝐼𝐼(𝑒𝑒) is the moment of inertia of the 𝑒𝑒-th finite element of the shaft, 
which expresses the kinetic energy of a rotating unstrained element that rotates with a 
constant angular velocity 𝜔𝜔0. 

The matrix and vector of the e-th finite element of the shaft have the following form: 

𝑴𝑴� (𝑒𝑒) =

⎣
⎢
⎢
⎢
⎡𝑺𝑺1

−𝑇𝑇(𝑰𝑰1 + 𝑰𝑰2)𝑺𝑺1−1 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝑺𝑺2−𝑇𝑇(𝑰𝑰1 + 𝑰𝑰2)𝑺𝑺2−1 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝑺𝑺3−𝑇𝑇𝑰𝑰4𝑺𝑺3−1 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝑺𝑺3−𝑇𝑇𝑰𝑰5𝑺𝑺3−1⎦

⎥
⎥
⎥
⎤
 , (16) 

𝑪𝑪�(𝑒𝑒) = �

𝟎𝟎 −𝑺𝑺1−𝑇𝑇(𝑰𝑰1 + 𝑰𝑰2)𝑺𝑺2−1 𝟎𝟎 𝟎𝟎
𝑺𝑺2−𝑇𝑇(𝑰𝑰1 + 𝑰𝑰2)𝑺𝑺1−1 𝟎𝟎 𝟎𝟎 𝟎𝟎

𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎

� , (17) 

𝑲𝑲�𝑑𝑑
(𝑒𝑒) = �

𝑺𝑺1−𝑇𝑇(𝑰𝑰1 + 𝑰𝑰2)𝑺𝑺2−1 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝑺𝑺2−𝑇𝑇(𝑰𝑰1 + 𝑰𝑰2)𝑺𝑺2−1 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎

� , (18) 

𝑲𝑲�𝑠𝑠
(𝑒𝑒) =

⎣
⎢
⎢
⎢
⎡𝑺𝑺1

−𝑇𝑇𝑰𝑰3𝑺𝑺1−1 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝑺𝑺2−𝑇𝑇𝑰𝑰3𝑺𝑺2−1 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝑺𝑺3−𝑇𝑇𝑰𝑰6𝑺𝑺3−1 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝑺𝑺3−𝑇𝑇𝑰𝑰7𝑺𝑺3−1⎦

⎥
⎥
⎥
⎤
 , (19) 
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𝒇𝒇�1
(𝑒𝑒) = [𝟎𝟎 𝟎𝟎 𝟎𝟎 𝑰𝑰8𝑇𝑇𝑺𝑺3−1]𝑇𝑇. (20) 

Here the quantities in (16) - (20) have the form: 

𝑰𝑰1 = �𝜌𝜌𝜌𝜌(𝑥𝑥)
𝑙𝑙

0

𝜱𝜱𝑇𝑇(𝑥𝑥)𝜱𝜱(𝑥𝑥)𝑑𝑑𝑑𝑑,                     𝑰𝑰2 = �𝜌𝜌𝜌𝜌(𝑥𝑥)
𝑙𝑙

0

𝜱𝜱′𝑇𝑇(𝑥𝑥)𝜱𝜱′(𝑥𝑥)𝑑𝑑𝑑𝑑, 

𝑰𝑰3 = �𝐸𝐸𝐸𝐸(𝑥𝑥)
𝑙𝑙

0

𝜱𝜱′′𝑇𝑇(𝑥𝑥)𝜱𝜱′′(𝑥𝑥)𝑑𝑑𝑑𝑑,                 𝑰𝑰4 = �𝜌𝜌𝜌𝜌(𝑥𝑥)
𝑙𝑙

0

𝜳𝜳𝑇𝑇(𝑥𝑥)𝜳𝜳(𝑥𝑥)𝑑𝑑𝑑𝑑,   

𝑰𝑰5 = 2�𝜌𝜌𝜌𝜌(𝑥𝑥)
𝑙𝑙

0

𝜳𝜳𝑇𝑇(𝑥𝑥)𝜳𝜳(𝑥𝑥)𝑑𝑑𝑑𝑑,                  𝑰𝑰6 = �𝐸𝐸𝐸𝐸(𝑥𝑥)
𝑙𝑙

0

𝜳𝜳′𝑇𝑇(𝑥𝑥)𝜳𝜳′(𝑥𝑥)𝑑𝑑𝑑𝑑,   

𝑰𝑰7 = 2∫ 𝐺𝐺𝐺𝐺(𝑥𝑥)𝑙𝑙
0 𝜳𝜳′𝑇𝑇(𝑥𝑥)𝜳𝜳′(𝑥𝑥)𝑑𝑑𝑑𝑑,               𝑰𝑰8 = 2∫ 𝜌𝜌𝜌𝜌(𝑥𝑥)𝑙𝑙

0 𝜳𝜳𝑇𝑇(𝑥𝑥)𝑑𝑑𝑑𝑑 .  (21) 
The values that include the spherical motion of the shaft are represented by integral 

matrices 𝑰𝑰2 and 𝑰𝑰5. 
In the case of a prismatic shaft (𝐴𝐴 (𝑥𝑥) = 𝐴𝐴, 𝐽𝐽(𝑥𝑥) = 𝐽𝐽), the integral matrices in (21) have 

the form 

𝑰𝑰1 = 𝜚𝜚𝜚𝜚𝜚𝜚 

⎣
⎢
⎢
⎢
⎡ 1 𝑙𝑙/2 𝑙𝑙2/3 𝑙𝑙3/4
𝑙𝑙/2 𝑙𝑙2/3 𝑙𝑙3/4 𝑙𝑙4/5
𝑙𝑙2/3 𝑙𝑙3/4 𝑙𝑙4/5 𝑙𝑙5/6
𝑙𝑙3/4 𝑙𝑙4/5 𝑙𝑙5/6 𝑙𝑙6/7⎦

⎥
⎥
⎥
⎤
 , 𝑰𝑰2 = 𝜚𝜚𝜚𝜚𝜚𝜚 �

0 0 0 0
0 1 𝑙𝑙 𝑙𝑙2
0 𝑙𝑙 4𝑙𝑙2/3 3𝑙𝑙3/2
0 𝑙𝑙2 3𝑙𝑙3/2 9𝑙𝑙4/5

�  

𝑰𝑰3 = 𝐸𝐸𝐸𝐸𝐸𝐸 �

0 0 0 0
0 0 0 0
0 0 4 6𝑙𝑙
0 0 6𝑙𝑙 12𝑙𝑙2

�,   𝑰𝑰4 = 𝜚𝜚𝜚𝜚𝜚𝜚 �
1 𝑙𝑙/2
𝑙𝑙/2 𝑙𝑙2/3�,   𝑰𝑰5 = 𝜚𝜚𝐽𝐽𝑝𝑝𝑙𝑙 �

1 𝑙𝑙/2
𝑙𝑙/2 𝑙𝑙2/3�, 

𝑰𝑰6 = 𝐸𝐸𝐸𝐸𝐸𝐸 �0 0
0 1�,   𝑰𝑰7 = 𝐺𝐺𝐽𝐽𝑝𝑝𝑙𝑙 �

0 0
0 1�, (22) 

where 𝐽𝐽𝑝𝑝 = 2𝐽𝐽, 𝜚𝜚 is the density of the material, E and G are the constants of the elastic 
material (i.e., the moduli of elasticity under tension and shear). 

After discretizing the one-dimensional continuum (a shaft) into finite elements and 
using the finite element method procedure and (15), with corresponding matrices, vectors for 
finite elements and the permutation matrix  𝑷𝑷𝜖𝜖𝑹𝑹12,12 𝑿𝑿(𝑒𝑒) = 𝑷𝑷𝑇𝑇𝑿𝑿�(𝑒𝑒)𝑷𝑷,    𝑿𝑿 = 𝑴𝑴,𝑪𝑪,𝑲𝑲𝑑𝑑 ,𝑲𝑲𝑠𝑠, 
we obtain the following expression for the energy for the shaft (a continuum) 

𝐸𝐸𝑘𝑘 = �𝐸𝐸𝑘𝑘
(𝑒𝑒) =

𝑁𝑁

𝑒𝑒=1

1
2
𝒒𝒒𝑇𝑇𝑴𝑴𝒒̇𝒒  + 𝜔𝜔0(𝒒̇𝒒)𝑇𝑇𝑪𝑪𝑪𝑪 +

1
2
𝜔𝜔0
2(𝒒𝒒)𝑇𝑇𝑲𝑲𝑑𝑑𝒒𝒒 + 𝜔𝜔0(𝒒̇𝒒)𝑇𝑇𝒇𝒇1 +

1
2
𝜔𝜔0
2𝐼𝐼, 

𝐸𝐸𝑝𝑝 = ∑ 𝐸𝐸𝑝𝑝
(𝑒𝑒) =𝑁𝑁

𝑒𝑒=1
1
2

(𝒒𝒒)𝑇𝑇𝑲𝑲𝑠𝑠𝒒𝒒,                        (23) 
where 𝑁𝑁 is the number of finite elements into which the considered shaft is partitioned, 𝑴𝑴 is 
the global mass matrix, 𝑪𝑪 is the global Coriolis matrix, 𝒇𝒇1 is the global vector of gyroscopic 
forces, 𝑰𝑰 is the total moment of inertia of the shaft around the 𝒙𝒙 axis, 𝑲𝑲𝑑𝑑 is the global matrix 
of rotating reduction, 𝑲𝑲𝑠𝑠 is the global static stiffness matrix, and 𝒒𝒒 is the matrix of the global 
vector of node deviations (generalized coordinate vector), in the form 
𝒒𝒒 = [𝒒𝒒𝑖𝑖], 𝒒𝒒𝑖𝑖 = [𝑢𝑢(𝑥𝑥), 𝑣𝑣(𝑥𝑥),𝑤𝑤(𝑥𝑥),𝜑𝜑(𝑥𝑥),𝜗𝜗(𝑥𝑥),𝜓𝜓(𝑥𝑥)]𝑇𝑇 , 𝑖𝑖 = 1,2, … ,𝑁𝑁,𝑁𝑁 + 1.  (24) 

The Lagrange equations for the shaft (without damping and external excitation) in 
matrix form can be written as 
𝑑𝑑
𝑑𝑑𝑑𝑑
�𝜕𝜕𝐸𝐸𝑘𝑘
𝜕𝜕𝒒̇𝒒
� − �𝜕𝜕𝐸𝐸𝑘𝑘

𝜕𝜕𝒒𝒒
� + �𝜕𝜕𝐸𝐸𝑝𝑝

𝜕𝜕𝒒𝒒
�   =  0. (25) 

Substituting the expression for the kinetic and potential energy (23) into the Lagrange 
equations (25), we obtain a system of ordinary differential equations in matrix form 
describing the motion of a rotating shaft taking into account the above factors, i.e.: 
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𝑴𝑴𝒒̈𝒒(𝑡𝑡) + 𝜔𝜔0𝑮𝑮𝒒̇𝒒(𝑡𝑡) + (𝑲𝑲𝑠𝑠 − 𝜔𝜔0
2𝑲𝑲𝑑𝑑)𝒒𝒒(𝑡𝑡) = 𝟎𝟎. (26) 

Here: 𝜔𝜔0𝑮𝑮 = 𝜔𝜔0(𝑪𝑪 − 𝑪𝑪𝑇𝑇) is the global matrix of gyroscopic effects. 
Simulation of dynamic processes in the rigid disks. The rigid disk model can be used 

as a simplified model of gears, couplings, wheels of railway vehicles, etc. 
Therefore, in this section, we will consider the constructed mathematical model for 

describing dynamic processes in the rigid disks in rotating coordinates. For this, a disk  
(Fig. 2) is considered with mass 𝑚𝑚 as a rotating symmetric one and it has a center of mass at 
point 𝑆𝑆. Suppose that the origin of the Cartesian coordinate system 𝜉𝜉𝜉𝜉𝜉𝜉 is at the center of 
mass of the disk, i.e. at point 𝑆𝑆 and the coordinate system is rigidly connected to the disk. 
Then the distribution of the disk weight can be described by the inertia matrix 
𝐼𝐼𝑆𝑆 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝐼𝐼0, 𝐼𝐼, 𝐼𝐼), in which these moments of inertia were determined around individual 
axes 𝐼𝐼0  =  𝐼𝐼𝜉𝜉 ,   𝐼𝐼 =  𝐼𝐼𝜂𝜂  =  𝐼𝐼𝜁𝜁 [4]. Further, considering the second Cartesian coordinate system 
𝑥𝑥𝑥𝑥𝑥𝑥, which rotates around the 𝑥𝑥-axis with a constant angular velocity 𝜔𝜔0, which corresponds 
to the nominal angular velocity of the body 𝜔𝜔. The oscillatory motion of the disk is described 
by displacements 𝑢𝑢, 𝑣𝑣, and 𝑤𝑤, respectively, in the directions of the 𝑥𝑥, 𝑦𝑦, and 𝑧𝑧 axes and at the 
Euler angles of 𝜑𝜑, 𝜗𝜗, and 𝜓𝜓. The general spatial motion of the body is resolved into 
translational motion, described by a velocity vector with components in a rotating coordinate 
𝑥𝑥𝑥𝑥𝑥𝑥 as 

𝒗𝒗𝑺𝑺 (𝒕𝒕)  =   �
𝒖̇𝒖(𝒕𝒕)

𝒗̇𝒗(𝒕𝒕)  −  𝝎𝝎𝟎𝟎𝒘𝒘(𝒕𝒕)
 𝒘̇𝒘(𝒕𝒕)  +  𝝎𝝎𝟎𝟎𝒗𝒗(𝒕𝒕)

�,  (27) 

and the relative spherical motion around the center of mass of the disk 𝑆𝑆, which is determined 
in the coordinate system 𝜉𝜉𝜉𝜉𝜉𝜉 by the angular velocity vector 

𝝎𝝎(𝒕𝒕)  =  �
𝝎𝝎𝟎𝟎 𝒄𝒄𝒄𝒄𝒄𝒄(𝝑𝝑(𝒕𝒕)) 𝒄𝒄𝒄𝒄𝒄𝒄(𝝍𝝍(𝒕𝒕))  +  𝝑̇𝝑(𝒕𝒕) 𝒔𝒔𝒔𝒔𝒔𝒔(𝝍𝝍(𝒕𝒕))  +  𝝋̇𝝋(𝒕𝒕)

𝝑̇𝝑(𝒕𝒕) 𝒄𝒄𝒄𝒄𝒄𝒄(𝝍𝝍(𝒕𝒕))  −  𝝎𝝎𝟎𝟎 𝒄𝒄𝒄𝒄𝒄𝒄(𝝑𝝑(𝒕𝒕))𝒔𝒔𝒔𝒔𝒔𝒔(𝝍𝝍(𝒕𝒕))
 𝝍̇𝝍(𝒕𝒕)  +  𝝎𝝎𝟎𝟎𝒔𝒔𝒔𝒔𝒔𝒔(𝝑𝝑(𝒕𝒕))

�. (28) 

 

 
Fig. 2. Rigid disk in a rotating coordinate system 

 
Taking into account the smallness of the angles of rotation (φ̇, ϑ̇  ≪ω0), 

expression (28) can be simplified, i.e.: 
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𝛚𝛚(𝐭𝐭)  =  �
𝝎𝝎𝟎𝟎 + 𝛝̇𝛝(𝐭𝐭)𝛙𝛙(𝐭𝐭)  +  𝛗̇𝛗(𝐭𝐭)

𝛝̇𝛝(𝐭𝐭)  −  𝝎𝝎𝟎𝟎𝛙𝛙(𝐭𝐭)
𝛙̇𝛙(𝐭𝐭)  + 𝝎𝝎𝟎𝟎𝛝𝛝(𝐭𝐭)

�. (29) 

In this case, the kinetic energy of the disk is determined as follows: 
𝐸𝐸𝑘𝑘  =  1

2
 𝑚𝑚𝒗𝒗𝑆𝑆𝑇𝑇𝒗𝒗𝑆𝑆  + 1

2
 𝝎𝝎𝑇𝑇 𝑰𝑰𝑆𝑆𝝎𝝎.  (30) 

After substituting (27) and (29) into (30) and after some correction, we get: 
𝐸𝐸𝑘𝑘  =  1

2
𝑚𝑚𝑢̇𝑢2   +  1

2
𝑚𝑚(𝑣̇𝑣 −  𝜔𝜔0𝑤𝑤)2 + 1

2
𝑚𝑚(𝑤𝑤̇ +  𝜔𝜔0𝑣𝑣) 2 + 1 

2
[𝐼𝐼0 (𝜔𝜔0  +  𝜑̇𝜑)2   +  2𝜔𝜔0𝜗̇𝜗𝜓𝜓] +

           + 1
2
𝐼𝐼�𝜗̇𝜗 −  𝜔𝜔0𝜓𝜓�

2
+ 1

2
𝐼𝐼(𝜓̇𝜓 + 𝜔𝜔0𝜗𝜗)2 . (31) 

Substituting (31) into the Lagrange equation allows us to obtain a system of ordinary 
differential equations in matrix form which describes the motion of a rigid disk: 
𝑑𝑑
𝑑𝑑𝑑𝑑
�𝜕𝜕𝐸𝐸𝑘𝑘
𝜕𝜕𝒒̇𝒒𝐷𝐷

� − �𝜕𝜕𝐸𝐸𝑘𝑘
𝜕𝜕𝒒𝒒𝐷𝐷

� + �𝜕𝜕𝐸𝐸𝑝𝑝
𝜕𝜕𝒒𝒒
�   = 𝑴𝑴𝐷𝐷𝒒̈𝒒𝐷𝐷(𝑡𝑡) + 𝜔𝜔0𝑮𝑮𝐷𝐷𝒒̇𝒒𝐷𝐷(𝑡𝑡) + (𝜔𝜔0

2𝑲𝑲𝐷𝐷)𝒒𝒒𝐷𝐷(𝑡𝑡). (32) 
Here: 𝒒𝒒𝐷𝐷(𝑡𝑡) = [𝑢𝑢, 𝑣𝑣,𝑤𝑤,𝜑𝜑,𝜗𝜗,𝜓𝜓]𝑇𝑇 is the vector of generalized coordinates of the rigid 

disk. At that, MD are the rigid disk mass matrices, which have the form: 
𝑴𝑴𝐷𝐷 =  𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (𝑚𝑚,𝑚𝑚,𝑚𝑚, 𝐼𝐼0, 𝐼𝐼, 𝐼𝐼),  (33) 
and the gyroscopic effect matrices of the rigid disk are: 

𝑮𝑮𝐷𝐷 =  

⎣
⎢
⎢
⎢
⎢
⎡
0 0 0 0 0 0
0 0 −2𝑚𝑚 0 0 0
0 2𝑚𝑚 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 𝐼𝐼0 − 2𝐼𝐼
0 0 0 0 2𝐼𝐼 − 𝐼𝐼0 0 ⎦

⎥
⎥
⎥
⎥
⎤

. (34) 

The rigid disk reduced rotation matrix   𝑲𝑲𝐷𝐷𝐷𝐷 is diagonal and has the form: 
𝑲𝑲𝐷𝐷𝐷𝐷 =  𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(0,𝑚𝑚,𝑚𝑚, 0, 𝐼𝐼, 𝐼𝐼). (35) 

It should be noted that for axisymmetric bodies in the form of a thin disk, 𝐼𝐼0 = 2𝐼𝐼 holds; 
it means the relationship between 𝐼𝐼0 – the moment of inertia about the axis of rotation and  
𝐼𝐼 – the moment of inertia of the cross-section of the disk. More information on modeling rigid 
and flexible disks in dynamic processes is described in detail in the monograph [4]. 

 
3. Results and discussion  
In this study, the determination of the dynamic characteristics (i.e., eigenfrequencies, modes, 
and decrement of oscillations) of a specific system (an object) is performed using the Altair 
Hyperworks and MATLAB software packages. 

The dynamic characteristics of the system are determined by solving the problem of 
natural vibrations for the system under consideration. Natural vibrations are the most ordered 
motions of the system, occurring in the absence of external influences; all points of the system 
oscillate according to the same real or complex harmonic law, with different amplitudes. In 
this case, the real part of the complex eigenfrequency means the frequency of oscillations of 
the system, and the imaginary part determines the velocity of oscillation damping and has the 
meaning of the damping coefficient. 

Determining the dynamic characteristics of a system is an important part of any 
dynamic analysis and it allows evaluating the dynamic behavior of a system (an object). 
When studying the natural vibrations of the system (determining the dynamic characteristics), 
a homogeneous system of ordinary differential equations (26) or (32) is solved. 

The described method was used to evaluate the eigenfrequencies and modes of vibration 
of a simple test steel shaft of wheelsets mounted on two bearings (radial-axial and radial 
ones). 

Finite element of rotating wheelset and its natural frequencies determination 713



The tested wheelsets consist of a hollow shaft and two disks (Fig. 3). Calculations were 
made for wheelsets with the following parameters - geometric dimensions: inner diameter of 
the shaft dshaft = 0.026 m; outer diameters of the shaft 𝐷𝐷1 = 0,130 𝑚𝑚, 𝐷𝐷2 = 0,165 m,  
𝐷𝐷3 = 0.194 𝑚𝑚,𝐷𝐷4 = 0.1475 m, 𝐷𝐷5 = 0.179 𝑚𝑚; the length of the shaft l = 2.216 m; bearing 
stiffness 𝑘𝑘𝑏𝑏 = 6𝑒𝑒 + 12 [𝑁𝑁/𝑚𝑚], 𝑘𝑘𝑎𝑎 = 2𝑒𝑒 + 12 [𝑁𝑁/𝑚𝑚]; the moment of inertia of the disks 
𝐼𝐼10 = 𝐼𝐼20 = 54.69 𝑘𝑘𝑘𝑘 · 𝑚𝑚2, 𝐼𝐼1 = 𝐼𝐼2 = 27.88 𝑘𝑘𝑘𝑘 · 𝑚𝑚2; mass of disks 𝑚𝑚1 = 𝑚𝑚2 = 364.57 kg; 
material properties: modulus of elasticity 𝐸𝐸 = 2.1e+11 Pа, 𝐺𝐺 = 8.076e+10 Pа; Poisson's ratio 
ν = 0.30; specific gravity of the material ρ = 7850 kg/m3. 

Determination of the dynamic characteristics of a rotating wheelset without 
damping. In the case of non-rotating wheelsets (for  𝜔𝜔0  =  0 rad/s), taking into account the 
bearings, the system of equations of motion has the following form: 
�𝑴𝑴 + 𝑴𝑴1

(𝐷𝐷) + 𝑴𝑴2
(𝐷𝐷)�𝒒̈𝒒(𝑡𝑡) + (𝑲𝑲𝒔𝒔 + 𝑲𝑲𝑩𝑩)𝒒𝒒(𝑡𝑡) = 𝟎𝟎, (36) 

where 𝑲𝑲𝑩𝑩 - is the bearing stiffness matrix, 𝑴𝑴1
(𝐷𝐷),𝑴𝑴2

(𝐷𝐷) are the disk mass matrices. 
The system of equations (36) for determining the generalized eigenvalue problem can 

be written in the form 
 �(𝑲𝑲𝒔𝒔 + 𝑲𝑲𝑩𝑩) − 𝜆𝜆𝜈𝜈�𝑴𝑴 + 𝑴𝑴1

(𝐷𝐷) + 𝑴𝑴2
(𝐷𝐷)�� 𝒒𝒒 = 𝟎𝟎, (37) 

where 𝜆𝜆𝜈𝜈 – the roots of the characteristic equation are the eigenvalues equal to the square of 
the eigenfrequencies Ω𝜈𝜈2. 

 

 
Fig. 3: Scheme of the tested wheelset  

 
Table 1 shows the first eight eigenfrequencies 𝑓𝑓𝜈𝜈 = Ω𝜈𝜈/2𝜋𝜋 of a non-rotating wheelset 

(as a deformable body) obtained using the Altair OptiStruct and MATLAB computer 
programs with short characteristics of the natural modes of vibration. 

 
Table 1. Natural frequencies of the non-rotating wheelset 

Number of 
eigenfrequencies 

𝑓𝑓𝜈𝜈 

Eigenfrequency 
𝑓𝑓𝜈𝜈 [Hz], 

MATLAB 

Eigenfrequency 
𝑓𝑓𝜈𝜈 [Hz], Altair 

OptiStruct 

Mode of vibration Error 
[%] 

1 0 0 Uniform rotation of the entire 
system (without twisting the 

shaft) 

0 

2.3 57.83 57.64 Bending mode of vibrations 0.34 
4 80.07 86.26 Torsional mode of vibrations 7.17 

5.6 163.6 170.11 Bending mode of vibrations 3.84 
7.8 354.11 363.08 Bending mode of vibrations 2.46 
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Figure 4 shows some natural modes of vibration of wheelsets corresponding to multiple 
eigenfrequencies. 

 

 
The second mode     The third mode 

 
The fifth mode    The sixth mode 

Fig. 4. Multiple natural modes of vibration of the non-rotating wheelset 
 
Analysis of eigenfrequencies (Table 1) and modes of vibration (Fig. 4) shows that the 

first mode of vibration of rotating wheelsets is the motion of an absolutely rigid body with 
frequency 𝑓𝑓0  =  0. An account for the elastic properties of the material of rotating shaft (as a 
deformable body) with two identical rigid disks leads to the appearance of multiple 
eigenfrequencies 𝑓𝑓2,3    and  𝑓𝑓5,6  with the corresponding modes of vibration. 

In the case of a rotating shaft (at   𝜔𝜔0  ≠  0 rad/s), the following aspects are taken into 
account: gyroscopic effects (𝜔𝜔0(𝑮𝑮 + 𝑮𝑮𝐷𝐷) and the effect of rotation on the overall stiffness 
(𝜔𝜔0

2(𝑲𝑲𝑑𝑑 + 𝑲𝑲𝐷𝐷𝐷𝐷). 
The equation for determining the eigenvalues has the following form: 

(𝑲𝑲𝒔𝒔 + 𝑲𝑲𝑩𝑩 − 𝜔𝜔0
2(𝑲𝑲𝑑𝑑 + 𝑲𝑲𝐷𝐷𝐷𝐷)𝒒̇𝒒(𝑡𝑡) − (𝑲𝑲𝒔𝒔 + 𝑲𝑲𝑩𝑩 − 𝜔𝜔0

2(𝑲𝑲𝑑𝑑 + 𝑲𝑲𝐷𝐷𝐷𝐷)𝒒̇𝒒(𝑡𝑡) = 𝟎𝟎. (38) 
We transform the equation of motion (26) and (32) from the generalized coordinate 

space to the space 𝒖𝒖(𝒕𝒕) = [𝒒̇𝒒𝑻𝑻(𝒕𝒕) 𝒒𝒒𝑻𝑻(𝒕𝒕)]𝑇𝑇 of the state, that is, 𝒖𝒖(𝒕𝒕) ∈ 𝑹𝑹𝟐𝟐𝟐𝟐 
𝑺𝑺𝒖̇𝒖(𝑡𝑡) + 𝑨𝑨𝑨𝑨(𝒕𝒕) = 𝟎𝟎. (39) 

Here:  

  𝑺𝑺 = � (𝑴𝑴 + 𝑴𝑴1
(𝐷𝐷) + 𝑴𝑴2

(𝐷𝐷)) 𝟎𝟎
𝟎𝟎 (𝑲𝑲𝒔𝒔 + 𝑲𝑲𝑩𝑩 − 𝜔𝜔0

2(𝑲𝑲𝑑𝑑 + 𝑲𝑲𝐷𝐷𝐷𝐷)
� is an asymmetric matrix, (40) 

𝑨𝑨 = �
𝜔𝜔0(𝑮𝑮+ 𝑮𝑮𝐷𝐷) (𝑲𝑲𝒔𝒔 + 𝑲𝑲𝑩𝑩 − 𝜔𝜔0

2(𝑲𝑲𝑑𝑑 + 𝑲𝑲𝐷𝐷𝐷𝐷)
−(𝑲𝑲𝒔𝒔 + 𝑲𝑲𝑩𝑩 − 𝜔𝜔0

2(𝑲𝑲𝑑𝑑 + 𝑲𝑲𝐷𝐷𝐷𝐷) 𝟎𝟎
� is an antisymmetric matrix.  (41) 

With (39) - (41) the eigenvalue problem is written in the form of a system of a 
homogeneous algebraic equation: 
[𝑨𝑨 − 𝜆𝜆𝜈𝜈𝑺𝑺]𝒖𝒖 = 𝟎𝟎. (42) 

A nontrivial solution to system (42) is 𝜆𝜆𝜈𝜈, that is, the eigenvalues of the characteristic 
determinant of equations (42), which are the imaginary value obtained due to the 
antisymmetry of the matrix 𝜔𝜔0(𝑮𝑮 + 𝑮𝑮𝐷𝐷). 
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The eigenvalues 𝜆𝜆𝜈𝜈 of system (42) are a complex quantity, i.e. 𝜆𝜆𝜈𝜈 =  ± 𝑖𝑖Ω𝜈𝜈 ,   
𝜈𝜈 =  1 , 2, … ,𝑛𝑛 and their imaginary part is the eigenfrequencies Ω𝜈𝜈 in rad/s of rotating 
wheelsets. 

Figure 5 shows (full line) the dependence of the first eight eigenfrequencies 𝑓𝑓𝜈𝜈  =  2𝜋𝜋Ω𝜈𝜈 
(Hz) on the rotating speed of the wheelsets per minute (the so-called Campbell diagram) 
plotted in the angular velocity range from 𝜔𝜔0 =  0 to 𝜔𝜔0 =  3500 rpm. 

 

 
Fig. 5. Campbell diagram for rotating wheelset 

 
Paired eigenfrequencies are divided into two branches, where the first increases and the 

second decreases depending on the angular velocity. This phenomenon is caused by 
gyroscopic effects. Obviously, the non-paired eigenfrequencies (𝑓𝑓4) do not depend on the 
rotating speed since this mode of vibrations does not affect the gyroscopic effects (torsional 
mode of vibrations). 

Determination of dynamic characteristics of a rotating wheelset with damping. 
Rotating wheelsets are considered with an account for the damping properties of the shaft 
material. Generally, in the calculations, when solving practical problems in engineering, the 
damping matrix [12] is used, instead of viscous damping, in the form of a linear combination 
of the mass and stiffness matrices 𝑩𝑩𝑠𝑠 = 𝑎𝑎𝑴𝑴𝑠𝑠 + 𝑏𝑏𝑲𝑲𝑠𝑠, a is the mass proportionality coefficient 
and b is the stiffness proportionality coefficient. The use of the damping matrix  
𝑩𝑩𝑠𝑠 = 𝑎𝑎𝑴𝑴𝑠𝑠 + 𝑏𝑏𝑲𝑲𝑠𝑠 simplifies the solution of practical problems. 

When describing dynamic processes on a rotating shaft with rigid disks (wheelsets), 
with the damping coefficient, equation (42) (𝜔𝜔0(𝑮𝑮+ 𝑮𝑮𝐷𝐷) is written using the damping 
matrix(𝑩𝑩𝑠𝑠 ), in the form (𝜔𝜔0(𝑮𝑮+ 𝑮𝑮𝐷𝐷) + 𝑩𝑩𝑠𝑠). 

Specific calculations for the geometrical and physical-mechanical parameters of the 
rotating shaft and rigid disk (wheelsets) similar to the given above were obtained. The relative 
damping coefficients were determined from [12] using 𝛼𝛼𝜈𝜈 and 𝛽𝛽𝜈𝜈, for 𝜔𝜔0 = 700 rad/s and 
𝑎𝑎 = 0, 𝑏𝑏 = 0.0002. 

Further, using the developed model, the eigenfrequencies and the damping coefficient 
for rotating wheelsets were determined, taking into account the damping properties of the 
shaft material (Table 2). The damping coefficient 𝐷𝐷𝜈𝜈 was determined by the formula 
𝐷𝐷𝜈𝜈 = −𝛼𝛼𝜈𝜈

�𝛼𝛼𝜈𝜈2+𝛽𝛽𝜈𝜈2 
. (43) 

Eigenfrequencies of the rotating wheelsets, considering damping, are given in Table 2. 
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Table 2. Natural frequencies of rotating wheelsets 
Number of 

eigenfrequencies 
𝜈𝜈 

Eigenfrequency 𝑓𝑓𝜈𝜈 (Hz), 
not considering 
damping (for  

𝜔𝜔0  =  700 rad/s) 

Damping 
coefficients 

𝐷𝐷𝜈𝜈, 

Eigenfrequency  
𝑓𝑓𝜈𝜈(Hz), considering 

damping (for 
𝜔𝜔0 = 700 rad/s) 
𝜆𝜆𝜈𝜈  =  𝛼𝛼𝜈𝜈  ±  𝑖𝑖 𝛽𝛽𝜈𝜈 

Damping 
coefficients 

𝐷𝐷𝜈𝜈, 

1 −3 .84𝑒𝑒 − 6 ±  𝑖𝑖 0 1 0 ,0027 ±  𝑖𝑖 0 1 
2 −1.72𝑒𝑒 − 5 ±  𝑖𝑖47.88 3.59e-07 −1.75 ±  𝑖𝑖47.84 0.0366 
3 −1.06𝑒𝑒 − 05 ±  𝑖𝑖66.97 1.58e-07 −2.45 ±  𝑖𝑖66.93 0.0366 
4 −2.02𝑒𝑒 − 07 ±  𝑖𝑖80.11 2.52e-09 −4.03 ±  𝑖𝑖79.97 0.0503 
5 −1.2𝑒𝑒 − 03 ±  𝑖𝑖153.60 7.84e-06 −15.80 ±  𝑖𝑖152.73 0.1029 
6 −1.6𝑒𝑒 − 03 ±  𝑖𝑖173.24 9.28E-06 −17.83 ±  𝑖𝑖172.36 0.1029 
7 −5.21𝑒𝑒 − 05 ±  𝑖𝑖350.8 1.49e-07 −78.06 ±  𝑖𝑖341.96 0.2225 
8 −5.27𝑒𝑒 − 05 ±  𝑖𝑖357.4 1.48e-07 −79.54 ±  𝑖𝑖348.51 0.2225 
 

Table 2 shows the first eight eigenfrequencies of a rotating shaft (as a deformable body) 
with wheelsets (at 𝜔𝜔0  = 700 rad/s) with and without damping, obtained using the MATLAB 
software. The results obtained show that an account for the damping affects only the seventh 
and eighth eigenfrequencies. Figure 5 shows (dashed line) the dependence of the first eight 
eigenfrequencies on the damping. The remaining (the first six) eigenfrequencies are 
practically not affected by damping. 
 
4. Conclusions 
1. Mathematical models and methods for determining the dynamic characteristics 
(eigenfrequencies, modes, and decrement of oscillations) of railway wheelsets, taking into 
account internal damping and gyroscopic effect were developed in this study. 
2. The eigenfrequencies, modes, and damping coefficient of rotating wheelsets at their 
different revolutions with and without damping were investigated. 
3. As a result of studying the dynamic characteristics of rotating wheelsets, it was determined 
that: 

– the values of the paired eigenfrequencies (𝑓𝑓2, 𝑓𝑓3, 𝑓𝑓5, 𝑓𝑓6 and 𝑓𝑓7, 𝑓𝑓8) were divided into 
two groups; in the first group the values of  (𝑓𝑓2, 𝑓𝑓5, and 𝑓𝑓7) increased, and in the second group 
the values of (𝑓𝑓3, 𝑓𝑓6 and 𝑓𝑓8) decreased depending on the angular velocity due to the influence 
of the gyroscopic effect; 

– non-multiple eigenfrequencies (i.e.,− 𝑓𝑓4) did not depend on the rotation velocity since 
the gyroscopic effects did not affect the torsional modes; 

– the damping effect did not affect the first 5 eigenfrequencies (𝑓𝑓2, 𝑓𝑓3, 𝑓𝑓4, 𝑓𝑓5 and 𝑓𝑓6), and 
when damping was taken into account, the seventh and eighth frequencies 𝑓𝑓7, 𝑓𝑓8 decreased 
insignificantly. 
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