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Abstract. In this paper, we consider the natural vibrations of inhomogeneous mechanical 
systems, i.e., cylindrical bodies located in a deformable viscoelastic medium. The theory and 
methods for studying the natural vibrations of a cylindrical shell in a viscoelastic medium are 
constructed. The viscoelastic properties of the medium are taken into account using the 
hereditary Boltzmann-Walter theory. For the statement of the problem, the general equation of 
the theory of viscoelasticity in the potentials of displacements in a cylindrical coordinate 
system is used. An algorithm has been developed to solve the tasks posed on a computer using 
the Bessel, Hankel, and Mueller and Gauss methods.       
The considered problems were reduced to finding complex natural frequencies for the system 
of equations of motion of a cylindrical shell in an infinite viscoelastic medium using radiation 
conditions. It is shown that the problem has a discrete complex spectrum. The eigen 
frequencies of oscillations of a low-contrast heterogeneity are found. Revealed that the 
imaginary part of the eigen frequencies is comparable with the real one, which can lead to 
aperiodic movements of the systems considered. 

1. Introduction 
The study of inhomogeneities is of great interest in predicting an important tectоnophysical 
phenomenon, i.e., the behavior of the hearth of an upcoming earthquake. Now it is widely accepted 
that the zone of upcoming seismic shocks is an area with elastic-density properties that change as a 
result of tectonic motions. This corresponds to the study of inhomogeneities with slightly changed 
relative to the external elastic medium velocities of longitudinal and transverse waves, as well as, 
possibly, the density. 

Any inhomogeneity in the medium must have, like any elastic mechanical system, a certain 
spectrum of natural frequencies. Because of variations in inclusion and environment are interrelated, 
will be damped due to radiation of elastic waves and, therefore, the eigenfrequencies are complex [1]. 
This is, the attenuation in an ideal elastic medium is explained by the radiation of the energy of waves 
excited by their vibrations due to diverging elastic waves. The interest in studying the natural 
frequencies of the elastic inclusion – the medium system is also due to the following circumstance.  
In this case, the state of an inhomogeneous body is described by a linear one-to-one relationship 
between stress and strain over the entire period of alternating stress. It follows that stress and strain are 
always in phase. The energy dissipation will occur if the stress and strain are not uniquely related 
during the oscillation period. When time derivatives appear in the equation linking these values, the 
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absence of such an unambiguous relationship occurs [2]. As you know, in this case, to calculate the 
wave field, the solution should be integrated in frequency along with the spectrum of the specified 
incident pulse. The resulting integral can, in General, be calculated by some direct numerical method. 
In this case, preference should be given to the method of integration using the theory of deductions in 
the form of expansion along the poles of the integrand function. Note that, the poles coincide with the 
roots of the equation of natural frequencies and, thus, to continue to have the opportunity to engage in 
problems of nonstationary diffraction of elastic waves, depending on the ratio apoplectic 
environmental parameters and inclusions, the study of the properties of the roots of the frequency 
equations [3].    
 In [4], the problem is considered in a stationary setting, when the incident wave is an infinite 
sinusoid in space and time. In this case, several difficulties arise since the eigenfunctions of the 
problem under study cannot be considered as a vector in a Hilbert space: they are not normalized due 
to the exponential growth of the distance. To eliminate it, it is proposed to take into account that 
fluctuations cannot exist for an infinitely long period of time, and, therefore, we come to the need for a 
restriction at a small initial time [5, 6]. In [7], the problem of "exponential catastrophe" is solved by 
developing special radiation conditions and boundary conditions.  
This article discusses the vibrations of cylindrical shells in a deformable medium. The main attention 
will be paid to the study of low-contrast inhomogeneities. Besides, the behavior of complex 
eigenfrequencies depending on the geometric and physical-mechanical parameters of an 
inhomogeneous system will be investigated. The physical nature of the considered inhomogeneities is 
closely related to convective flows in The earth's interior, as well as to various areas of faults and 
fractures  [8,9,10]. Such inclusions are very common and, therefore, have a significant impact on the 
scattering of seismic waves in various media [11, 12, 13].  
Along with this, the dynamics of various systems and structures, taking into account the features and 
working conditions, were studied in [19, 20, 21, 22, 23]. 

These are just some of the works in which the assessment of the oscillatory processes of various 
systems and structures is considered taking into account the viscoelastic properties of materials. 
 
2. Methods 
2.1   Problem statement 
The equations of motion of the Kirchhoff-Love shell, taking into account the reaction of the 
deformable (viscoelastic) medium under torsional vibrations, can be written as 
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where 0G is the modulus of elasticity of the shell material; h is the thickness of the shell, v is the 

torsional displacement of the point of the middle surface of the shell, �cq  is external load from the 

environment[14]. 
The values of non-zero components of the stress tensor in the medium are determined using tangential 
offsets using the formulas 
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f(x) is an arbitrary function of time; )( ��tRG is the core of the relaxation, �ocG  is the instantaneous 

modulus of elasticity, �0u is the torsional motion of the medium.  



CONMECHYDRO – 2020

IOP Conf. Series: Materials Science and Engineering 883 (2020) 012190

IOP Publishing

doi:10.1088/1757-899X/883/1/012190

3

Take the integral terms in (2) small. Next, using the freezing procedure, replace the ratios (2) with 
approximations of the form [15]. 
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are the cosine and sine Fourier images; �R� is real value. As a model of viscoelastic material, we take 
the relaxation core of Koltunov-Rzhanitsyn 
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Given that only shear waves are excited about the twisting load, we obtain the equation of motion of 
the medium[16] 
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The boundary conditions of the problem for r=R have the form 
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h
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2.2   Method of solution 
Considering axisymmetric oscillations of the shell, we are will looking for the solution of equations 
(1) and (4) in the form:  
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(6) 

where π/m is wavelength along the generating line; ��� iR i��� is the complex circular frequency 

of natural oscillations. 
Substituting the expression (6) in (1), we get the relationship between the amplitudes of the reaction of 
the elastic medium and the displacement of the shell 

                       02222 )))](()(1([ VMhiГГGhq RRR
C
GR

C
GocRco ����� ��                                  (7) 

where. R
VV

hiГГG
RpmRM

R
hh

RR
S
GR

C
Goc

RR �
��

���� 02

2

2

0 ,
))]()(1(

;; �
��

 

Dependencies (7) allow the boundary condition for the environment for r = R to be written as 
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Substituting the expression (6) in (4), we get 
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Solving equations (8), taking in to account the damping condition of oscillation sat infinity, we have 
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If we use Winkler bases, then )0(,0 �� �cp , and the solution of equation (8) takes the form 

0 1 1( )RU AK M r�                                                            (10)  

Substituting solutions (9) in (4) with the boundary condition (5), we obtain the following frequency 
equation 
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By RM�� in equation (11), insert an expression with a plus sign instead of the last term βΚ0 (β)/ Κ1 

(β). If RM�� is executed, then satisfies the condition
2
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This case is not of practical interest, since for most materials 0��cp . In the case when the shell 

oscillation frequency is in a vacuum )( 0 ��� , then 
R

R

h
M

�� . For a shell in an elastic medium, the 

complex eigenfrequencies of oscillations are determined by solving the transcendental equation (11) 
on a computer. 
 
2.3   Shell oscillations are described by Timoshenko type equations 
We describe the shell oscillations with Timoshenko-type equations. Then for an axisymmetric 
torsional motion, we have 
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Here	 is the angle of rotation of the normal in the tangential direction; k2 is the coefficient of 
Tymoshenko. 
The boundary conditions for the medium at r= R have the form 
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�	                                                   (13) 

Representing the solution of equations (12) as (6), we define the parameters qc0, αо through the move 
V. 
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Given the expressions (14), we transform the boundary condition for the environment when r1=1 
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Since the solution of the equation of motion of the medium does not depend on the accepted shell 
model, the further derivation of the equations is similar to the one discussed above for the Kirchhoff 
— Love shell. The choice of the shell model only affects the type of boundary conditions (13). Instead 
of the characteristic equation (11), we write an equation of the form 
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For the case )0(,0 �� �cp we obtain a characteristic equation for the Timoshenko shell in a non-

inertial medium. By Gc=0 we find the frequency of torsional vibrations of the Timoshenko shell in a 
vacuum 
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The first frequency, as for the Kirchhoff - love shell, corresponds to the rotation of the section as a 
ring, the second is the form of oscillations caused by the rotation of the normal in the tangential 
direction. 
Putting in equations (11), (16) 0 0, ( 0)Rh h� � we obtain a characteristic equation for the proper 

axisymmetric torsional oscillations of an elastic inertial array with a cylindrical cavity, given in the 
article [8]. 
 
2.4   Shell vibrations are described by the equations of elasticity theory 
We are looking for an exact solution to the problem for the case when the shell motion is described by 
equation (2). Then the boundary conditions will look like [18], [19]: 
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Here, the index 1 denotes the shell. 
The General solution of the equations of motion of a cylindrical layer is written as 
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the radiation conditions at infinity, we obtain the characteristic equation det ||αij|| = 0, i,j= 1,2, 3.                          

The elements of the determinant (20) for 

��������� RRRRR
R

RR
R

R hMMhMphMph ,, **

��
(20) 



CONMECHYDRO – 2020

IOP Conf. Series: Materials Science and Engineering 883 (2020) 012190

IOP Publishing

doi:10.1088/1757-899X/883/1/012190

6

they have a different appearance. For example, for the third case 
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Now we use asymptotic representations of the Bessel function of the first and second kind. Then we 

get the asymptotic formulas for the first eigenvalue frequency corresponding to long waves 0�GR  
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If you use a Winkler base instead of an elastic array, then the frequency expression takes the form 
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Calculations have shown that for (1/MR ) ≥ 1.46  the results, obtained using asymptotic formulas 
almost coincide with the exact solutions. 
 
3. Results and Discussion 
The frequency equation (11) is solved by the Muller method [18]. Complex Eigen frequencies 
depending on the wavelength for various parameters (stiffness) of the viscoelastic medium are shown 
in Figure 1 ( 1,0;1,0;05,0;048,0,01,0 ����� 	�
Ax ) for curves:

253;5,302;5,1201 ��������� ccc ppp ��� . A continuous line shows the real parts 

of the shell's natural oscillation frequencies in an elastic medium (or in an inertial array), a dotted line 
–on the basis of a Winkler (or a non-inertial one), and a dashed line-in a vacuum.  
Figure 1 shows that the real parts of the frequency approach the asymptotic with increasing medium 
stiffness.  As seen in figure 2, with increasing medium stiffness, the error increases, especially in the 
region of short waves. 

Figure 2 shows the dependence of the real part of the dimensionless complex frequency of torsional 
vibrations on the relative thickness of the shell.  Numerical results are obtained 

3/25,001,0,30,3 2
1 ����� kpM cRR �� . For figure 2 curve 1 corresponds to the first 

mode of oscillation, 2 - to the second, and 3 - to the third. A continuous line marks the shell in an 
elastic medium, a dotted line marks it in a non - inertial medium, and a dashed line marks it in a 
vacuum. The results obtained when describing the shell motion by equations of elasticity theory 
correspond to the curves 1, 2 (–о-). 
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Figure 1. Changing 1R� in function
RM

1
 

 
 

Numerical results show that for the first mode of motion, the results of calculations for the shell theory 
and the elasticity theory are almost identical, and the influence of the inertia of the medium on the 
complex oscillation frequencies is particularly significant for thin shells ( 0.025Rh � ). If the inertia of 

the medium is not taken into account, the value of the first frequency is overstated.  
The real and imaginary parts of the third frequency are almost unaffected by the inertia of the 

medium. So, for a cylindrical shell with a thickness of 0.064Rh �  ( 0�GR ) the obtained values of 

the real parts of complex frequencies practically coincide with the exact ones. If the shell motion is 
described by the equations of elasticity theory, a second mode (curve 2) appears, caused by the 
presence of a viscoelastic environment. 
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Figure 2. Changing 1R� in function of the wavelength
�
R

 

 
Obtained the numerical results that differ from the known results of V. A. Dubrovsky [6, 7] by up to 
10-15%. 
 
4. Conclusions 

1. The theory and methods for studying the natural vibrations of a cylindrical shell located in a 
viscoelastic medium are constructed. 

2. An algorithm and computer calculation program have been developed to determine the complex 
eigenfrequencies and vibration modes of a cylindrical shell in a viscoelastic medium. using the 
functions of Bessel, Hankel, and the methods of Mueller and Gauss. 
3. The natural vibrations of cylindrical shells in an infinite viscoelastic medium are studied for various 
parameters of both the shell and the medium. 
4. The problem considered when using the radiation conditions for a reduced infinite region to a finite 
one has a nonzero solution in the class of infinitely differentiable functions. It is shown that the 
problem may have a discrete spectrum. 
 5. It was revealed that at some values of the viscoelastic density parameters of the system, low-
frequency eigen-oscillations arise. In this case, the imaginary parts of the natural switching frequency 
can be commensurate with the real one. This can lead to some aperiodic movements, and the obtained 
results allow us to predict the scattering of viscoelastic (or seismic) waves in deformable media in the 
presence of an inclusion. 
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