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Abstract. Thermo-mechanical phenomena that occur during the metals cutting in a cylindrical 

form are difficult in terms of systematic and interconnected mathematical description for a 

three-dimensional deformable body. In this connection, empirical formulas of the cutter 

interaction with the processed surface of metal products are used in calculations. In this paper, 

we propose the most general approach for modeling the process of metalworking by 

thermodynamically nonlinear strain.  Using the non-classical theory of deformation, the three-

dimensional problem of metalworking by cutting is reduced to a two-dimensional one. The 

proposed approach made it possible to compose resolving equations and boundary conditions 

for the problem under consideration, taking into account heat release and wear on contact sur 

faces with a cutting tool. 

1. Introduction 

Currently, in industrial production, the approaches to develop “smart technologies” with machine 

learning are becoming relevant; on the bases of these approaches lie the simulation modeling. In such 

studies, it is necessary to justify, systematize and ensure the interconnection of the theory of friction, 

wear and filings formation, the thermodynamics in the mechanical working of metals by cutting, 

ensuring the reliability of the cutting tool. 

High-precision technologies for the production of industrial items are closely related to thermo-

mechanical processing of metal parts surface. The machining of metal cylinders by cutting is 

accompanied by thermodynamic processes with significant heat release. The heat source in metal 

cutting is the work spent on the finite strain in the cut off a layer, and the work to overcome friction on 

the rear surfaces of the cutter. During the finite strain in cutting, the material points of the sample 

move relative to each other forming an additional source of heat build-up [1, 2, 3, 4, 5]. 

It is known that the process of thermo-mechanical cutting of rigid bodies, due to the complexity of 

the processes occurring there, is difficult to model mathematically [6, 7, 8, 9, 10]. Here, at the tip of 

the cutter, eleven relatively independent phenomena are focused that have not yet come to a holistic 

description. These are the filings formation processes, the mechanics and thermodynamics of metal 

cutting, the theory of friction and wear during metalworking, the theory of resistance, and reliability of 

cutting tools. 

Here we propose a thermomechanical theory of cutting cylindrical metals based on the fundamental 

laws of thermodynamics and nonlinear mechanics of a deformable rigid body. In this process, along 

the cutting line (due to the occurrence of critical internal stresses at the tip of the cutting tool) metal 

filings tear off from the base. In this case, after the tear-off, the filings in the form of a metal strip 

make finite displacements [11, 12, 13, 14, 15, 16]. 
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2. Methods 

Mechanical processing of metals by cutting is accompanied by significant thermodynamic processes. 

The source of heat when cutting metals is the work spent on deformations in the cut layer and the 

layers adjacent to the treated surface and the cutting surface and on overcoming friction on the front 

and back surfaces of the cutter.  During the deformation process, metal grains move relative to each 

other, this is a source of heat generation. 

 

3. Results and discussion 

The heat released during the cutting process is not concentrated in the places of its formation, but 

according to the laws of thermodynamics it spreads over the volume of the sample, from points with a 

higher temperature to points with a lower temperature. About 95% of the mechanical work of 

deformation and friction passes into heat when cutting metals.  

Besides, when cutting metals, heat occurs due to the friction of the chip on the front surface of the 

cutter and the friction of the back surface of the cutter on the cutting surface. Therefore, when cutting 

metals, chips and contact surfaces are heated in the range of 500-1000°, while the generated heat is 

mainly absorbed by chips – 50-86%, by cutter – 10-40% and by workpiece – 3-9%, about 1% heat is 

radiated into the surrounding space [11]. 

The stress state under nonlinear deformation of a cylindrical body for a stationary mode of 

thermomechanical processing in the absence of volumetric forces, in the Euler coordinate system, is 

described by the equilibrium equation [7, 12, 13]. 
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Where , , , , ,ij zz iz zi i zP P P P U U are the components of the second Piola - Kirchhoff tensor and 

the displacement vector, 
 
-are the displacements Σ=Σ1+Σ2given on the part of the boundary, 

0 0 0 0, , ,i i z zU V U V are the coordinate functions characterizing the initial state of the body, nj, nz are the 

external normal. 

According to the theory of V.V. Novozhilov, nonlinear deformation of the elementary volume of 

the considered three-dimensional body is accompanied by finite rotations and displacements but with 

small relative changes in geometric dimensions. 

In these conditions, the actual (after deformation) curvilinear triple-orthogonal coordinate system 

321 o  practically remains unchanged, i.e. the condition 1 1 2 2 1, , ,x x z    

Then the second Piola-Kirchhoff tensor ijP  through the symmetric Cauchy tensor kj   in the initial 

coordinate system is expressed as follows [7] 

                                       
 , ,ij ik i k kjP U   ,                                                   (3) 
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The defining relations between the symmetric Cauchy stress tensor
ij  and the finite strain tensor 

for elastic isotropic materials in the thermodynamic form of recording the defining Duhamel-Neumann 

relations take the following form 

  02 ,ij ij ije e T T         
                           

(4) 

Where  
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Lame coefficients, E is the modulus of elasticity, ν is Poisson's ratio; Т, Т0 are the temperature of the 

current and initial state, β is characterizing the influence of temperature stresses. 

The Fourier heat equations for the steady-state process in cylindrical bodies will have the following 

form 
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(5) 

 

Where сε, λε – coefficients of heat capacity and thermal conductivity with constant deformation. 

Thus, we have the general task of the nonlinear thermodynamic theory of elasticity for thermal-

mechanical processing of metal parts by cutting method solving which we  

can study the stress-strain state of the objects under consideration, including metal strips and formed 

chips. Due to the difficulties encountered in solving nonlinear three-dimensional problems (1)-(5) in 

applied problems the mechanics of a deformable solid usually turn to two-dimensional problems. 

 

 
Figure 1. Schematic description of the 

process of thermomechanical processing 

of a metal cylinder by cutting: 1-

cylindrical sample after 

thermomechanical processing; 2-formed 

metal chips; 3-cutter. 

 

 
Figure 2. Kinematics of chip formation during machining. Zone 1, 3 the 

strip above the cutting tool before and after the impact of the cutting 

tool. Zone 2, 4 the corresponding area under the cutting tool 

 

In this problem, the stress-strain state of a metal cylinder before the formation of chips is described in 

the framework of the linear thermodynamic theory of elasticity 
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After the impact of the cutter, at the time of chip formation, the metal strip undergoes final 

displacements, and the strip bending is accompanied by a predominance of deflection compared to the 

others, i.e. the condition Uz>>Uiis satisfied. 

Therefore, in expressions (1)-(9), when the plates are bent by nonlinear terms along the Ui 

displacement vector axial displacements they are usually neglected. At that, the nonlinear components 

of the derivative Uzwith respect to the normal coordinate z are also taken to be negligible. 

Then, for the components of the second Piola – Kirchhoff tensor and the Lagrange – Green strain 

tensor, we have: 
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(6) 

The design diagram of a three-dimensional deformable body is a metal cylindrical disk with a 

thickness h=h1 + h2 in the direction of Oz, with a radius-R on which the cutter acts (Fig. 2) Mentally 

carved from a cylindrical body. In this case, the strip-1 with a thickness of h1 is above the cutting tool 

and the strip-2 with a thickness of h2 below it. Cylindrical-coordinate systems Оx1x2ξi ,i=1,2  are 

located in the mid-plane of the bands and disk. 

Here it should be noted that the thickness h2 of a mentally cut disk from a metal cylinder, and even 

more so the thickness h1 of the formed chip, is small compared to its radius-R. In the process of 

mechanical processing of metals by cutting, the formation of chips is accompanied by final rotations 

and movements, but with small relative changes in geometric dimensions, relative to the coordinate 

plane 

These bands, until the moment of impact of the cutter ctx  , represent a single whole composition, 

therefore, along the line of separation of regions 1 and 2 ( 2
2

2

h
  or 1

1
2

h
   ) for homogeneous 

isotropic bodies, the continuity conditions are met: 
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In the process of thermomechanical processing of metals by cutting at the tip of the cutter there is 

infinite tangential stress in the direction 2x , resulting in the chip separation from the base(area 3). 

After the impact of the cutter: 2x ct on the upper plane of the lower band 2
2

2

h
   (area 4), tangential 

stresses occur due to the friction of the cutter when moving on the plane of the selected disk 

1 2Оx x Then the following boundary conditions take place: 
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Under these conditions, the following boundary conditions occur at the lower border 1
1

2

h
    of the 

upper band (area 3) when the cutter is tangentially impacted P the following boundary conditions 

apply 
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Before and after the impact of the cutter, the following boundary conditions for the corresponding 

components of the stress tensor and the temperature field take place in the lower bounds of the lower 

cylindrical disk 
2

2
2

h
 area 2,4), as well as for the upper plane 

2

1
1

h
  of the upper band (area 1,3) 

there are the following boundary conditions for the corresponding components of the stress tensor and 

the temperature field (they are written without an upper index): 
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(10) 

In the above expressions, с is the rate of displacement of the cutter along the cylinder forming part. 

k is the coefficient of friction when the cutter interacts with the sample, at a given temperature-T0.  η is 

the angle of attack of the cutter, fT is the coefficient reflecting the influence of temperature on the chip 

displacement. 

The desired movement is represented as: 
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In (11), in contrast to traditional representations, 8 new integral functions for radial, meridional 

coordinates and time – 1 2, , , , ,i iC D V    . This is the number of unknowns required to meet the eight 

boundary conditions set on the face planes of the cylindrical disks under consideration. 

Taking into account (4), for elastic isotropic plates, it is possible to obtain analytical expressions for 

nonlinear components of the stress tensor via integral quantities. 

Satisfying the boundary condition (7) will lead to the following relations 
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taking into account the expressions for the components of the stress tensor and the relations (14) and 

(15) and the resulting equations resolving relatively unknown ones
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Boundary conditions for normal stresses and temperature fields from (10) lead to the following 

system of equations 

                  

 

 

(1) (1) (1) (1)

1

2
(1) (1) (1) (1) (1)1 1

1 1 2 0 1 2

(2) (2) (2) (2)

2

2
(2) (2) (2) (2) (2)2 2

1 2 2 0 1 2

0,
1

,
2 6

0,
1

.
2 6

kk

kk

V R h

h h
h

V R h

h h
h


 



     


 



     

   


 
    

 

   


 
    

 

                                

(18)

 

 

In the heat transfer equations in (18) substituting the corresponding expressions from (14) and the 

resulting equations, resolving the relatively unknown )1(

2

)1(

1 ,  : 

                       

(1) (1) (2) (1) (1) (2)

1 2 1 0 2 0 1 1 0 2 0

(2) (1) (2) (2) (1) (2)

2 2 1 0 2 0 1 1 0 2 0

2
(1) (1) (1) (1)1 1 1

0 1 2

2
(2) (2) (2) (2)2 2 2

0 1 2

, ,

, ,

,
2 2 6

2 2 6

h a a b b

h c c d d

h h h

h h h

     

     

   

   

   

   

 
    
 

 
    
 

                          

(19) 

2 1 1 1 1
0 2 1

2 1 2

1 2
1 2 1

0 1 2 2

2 1
2 1 1

0 2 1

1
2 1

1

61 3 5
2 2 3 ,

2 3 3 2 4 4

31 2 3 5
2 3 2 ,

2 4 4

31 2
2 , 1 ,

2 6

2
1 .

2 6

h h h h h
a h h

h h h

h h
a h h

a h h h

h h
a b a

a h h

h
b a

h

  
 




 



 
 







 
        

  

   
      

   

    
            

 
   

  
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1 1
1 1 1 2

2 2 2

1 1
2 2

2 2 2

1 1
1 1 1

2 2 2

1 1
2 2 2

2 2 2

3 3 1
1 3 ,

2 2

3 3 1
1 3 ,

2 2

3 1 1
1 3 1 ,

2 2

3 1 1
1 3 1 .

2 2

h h
c b a c

h h h

h h
b a

h h h

h h
d b a

h h h

h h
d b a

h h h

   
         

   

   
       

   

   
       

   

    
         

    

 

 

Expressions from (14), (15), (17) and (19) substituting in the corresponding equations (18) we get 

the following system of differential equations for determining
)1()1( , RV : 

                 

 

 

 

 

 

(1) (1) (1) (2)

11 12 1 17 18

(1) (2) (1) (2)

13 14 15 1 16 2

(1) (1) (1)1
1

(1) (1) (1) (2)

21 22 1 27 28

(1) (2) (1) (2)

23 24 25 1 26 2

(2)

1
0,

2

k k

i i i i i

k k

i i i i i

a V a h a W a W

a u a u a h a h

h
V h

a V a h a W a W

a u a u a h a h



 


 





 



     

    

 
   

 

     

    

2

(1) (2)
(1) (1)2 1 2 1

1

2 2 2

1

2

2 3 2
6 0,

h

h h h hw w
V h

h h h







 
   
 

  
    
 

   

(20)

                  

 

    1
11 1 1 2 12 2 1 1 13

2

1 1
14 15

2

1 1
; 6 5 ; 1 2 ;

8 72

2 ; ;
3

h
a h h h a h h h a

h

h h
a a

h

     

  

 

   

   

1 1
16 17 18

2

21 1 2 2 1 2 1

2

22 1 2 2 1 2 1

2 1
23 2 1 24 2 1 25

2 1 2 1 2 1
26 27 28

2 3
0; ; ;

3 4

1 1
4 7 ( 2 ) ;

12 2

1 1
4 7 ( 2 ) ;

12 6

2
11 14 ; 11 14 ; ;

12

8 7 10 6 9
; ; ;

6 6 4

h h
a a a

a h h h h h h

a h h h h h h

h h
a h h a h h a

h h h h h h
a a a

   

 
     

 

 
      

 


     

  
    

 

The boundary conditions (8) and (9) are met with the following expressions for the desired values  
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(3) (3) (3) (3) (4) (4)

1 2 3 0 1 3 0 1 2 4 0

2
(4) (4) 1

1 4 0 3 32 2 2 2

1 1

2

2
4 42 2 2 2

2 2

2 2
(3) (3)1 1 1

02 2 2 2

1 1

(4) 2 2

, , ,

612
, , ,

12 12

612
, ,

12 12

6
1 ,

2 12 12

6
1

2

h a b h a

h
b b a

h h

h
b a

h h

h h h

h h

h h

     


 

 



 

 
 

 




  

  
 

 
 

  
     

    

 
   
 

2 2
(4)2
02 2 2 2

2 2

2 2 2
22 2 2 2

2 2

12 12

6 6
1

12 12 2

( ) ( ).tr

h

h h

h h h
h

h h

H ct H ct a




 

  


 

  

 
  

  

  
  

  

  
                  

(21) 

     

2 (3) (3) (3) 2 (3)1
1 2 2 1

1

(3) (3) 2 (4) (4) (4)1 1 2
1 2 2 2

1

2 (4) (4) 1
2 2 2 2

1

5 1
( ) ,

3 2 6

( ) , 6 ,
2 2 2

5
( ) ( )

3 2

i
i i i i

i
i i i

i
i i i i

P
h D x ct W h

x

Ph h
h C V x ct h W V

x

P
h D H x ct H ct a x

x








   


  


 

   
         

   

   
           

  


       



(4) 2 (4)

2

(4) (4)1 1
1 2 2 2

1

(3)
(3) (3) (3) (3)1 1

1 1

(3)2 1

1 1

(3)

1

1
,

6

( ) ( ) ,
2 2

71
3

2(1 ) 6 6 2

3 6 ,
2

i
i i i

i i i i i

W h
r

Ph
h C V H x ct H ct a x

x

h h W
V u

h h

tc x h
tg

h h

h









 




 



  
   

  

 
        

 

    
            

     

  
   

 

 (3) (3) (3)1 1

1

(3)
(3)2 1

1 1 1

(4) (4) (3) (4)2 2 2

(4)
(4)

2

73

2(1 ) 6 6 2

3 3 3 ,
2

3

3 5 2

1
4 6 0.

i i i i i

i i i i i

h h
u

h

tc x hW
tg

h h h

h h h
u

W
V

h


 




 

  





    
           

     

  
    

 

   
          

   

 
   

 

     (22) 

Thus, within the framework of the proposed non-classical theory of deformation of metal machining 

by cutting, the exact fulfillment of the boundary conditions that occur on the front planes of the 

processed metal disk and the formed chips after the impact of the cutter is achieved. 

     According to the non-classical theory of deformation when machining metals by cutting, ignoring 

the values of the high order of smallness, in order to move from the original three-dimensional 

problem to a two-dimensional one, we produce a standard procedure for integrating the thickness of 

the system of equilibrium equations [16]; 
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( ) ( ) ( ) ( )

22 1 1 21 1 2

( )

( ) ( ) ( )

22 1 1 21 1 2

( ) ( )

1 1

1 1

/ /
2

0,
2

/ /

0,
2 2 2

I I I I I
j ij i i iz

I I
iz

I I I

j ij i i i

I II I I
iz iz

k k
j j k kj k kj

h
N N x N x

h

M M x M x Q

h h h

Q W N V M
x x

  



 

 

 

 
     

 

 
   

 

    

    
       

    

    
          

   

( ) ( ) 0.
2 2

I II I
zz zz

h h
 




   
      

   

             

(23) 

Where 
/2 /2 /2

( ) ( ) ( ) ( ) ( ) ( )

/2 /2 /2

, , ,
I I I

I I I

h h h

I I I I I I

ij ij ij ij i iz

h h h

N d M d Q d      
  

    
 

     

 

2 2
( ) ( ) ( ) ( ) ( ) ( ) ( )1

1

( ) ( ) ( )

2 3
( )

3
,

2 5 2 6

1
,

2 2 2

1

2 2 6 20

I I I I I I II I i I I
iz i I i i i

I I II I I
zz kk I

I I I I
kk k k k k k

h h h h
h C D w V

x

h h h
V Rh

h h h
u C D


   


   



 

    
             
     

      
            
      

 
      
 


 
           

(24) 

           

( ) ( ) ( ) ( )1

( ) ( )

2 2
( ) ( ) ( ) ( )1

( ) ( )

2 ,
2 2 2

2 2

3
2 ,

5 6

2 2

I I I IiI I I
iz iz I i i

I II I
iz iz

I I I IiI I
i i i

I II I
zz zz

i I

h h h
h C V

x

h h

h h
D w

x

h h

h


  

 


  

 



     
           

      

   
     

   

   
        

   

   
    

   

 
3

( ) ( ) 1
2 ,

10

I II
i i I

h
D h


 



   
   

  

             

(25)

 

 

at the same time,h3 =h1 , h4 =h2. 

Similarly, by integrating the heat conduction equations, we will have a nonlinear equation for each 

band, in terms of integral quantities 

 

                                  
( ) ( ) ( ) ( )

1 ,

I I I I

I k kс h T u                                                   (26) 

In this case, the equation of equilibrium (23) of thermal conductivity (26) taking into account (14), 

(15), (17), (19), (20), (21) and (22) become closed with respect to the following unknown integral 

quantities
( ) ( ) ( ) ( ), , ,I I I I

i iu W  . 
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In terms of integral quantities, the boundary conditions corresponding to various continuity and 

anchorage conditions are written as follows [18]. 

 
( 1) ( ) ( 1) ( ) ( 1) ( ) ( 1) ( ) ( 1) ( )

( 1) ( ) ( 1) ( ) ( 1) ( )

( 1) ( ) ( 1) ( )

1 1 2

(

, , , , ,

. , , ,

, , , , , .

2,4 , , 0.

.

I I I I I I I I I I

i i i i

I I I I I I

ij j ij j ij j ij j i i i i

I I I I

i i i i i i i i

ij

u u w w V V

I N n N n M n M n Q n Q n

V n V n n n

I при x r x сt t

II N

   

 

    

  

 

     


  


 

   

) ( ) ( ) ( ) ( ) ( )

____

1 2

0, 0, 0, , 0, , ,

0, , 0,2 ,1,4

I I I I I I

j ij j i i i i i in M n Q n V n n

I при x R x

 



        

  

 

It should be noted that the first type of boundary conditions correspond to the continuity conditions, 

and the second type corresponds to the free edge taking into account the heat exchange process [17]–

[24]. 

The initial conditions for the temperature field taking into account (11) can similarly be written in 

terms of integral quantities. The resulting problem can be solved by numerical methods [25,26]. 

 

4. Conclusions 

1. A mathematical model describing the process of cutting cylindrical objects based on the 

thermodynamic nonlinear theory of elasticity has been developed; 

2. Solving equations and boundary conditions for the description of thermomechanical processes in 

the processing of three-dimensional metal cylindrical bodies by cutting, taking into account heat 

generation and wear on the surfaces in contact with the cutting tool, are compiled. 

3. Boundary conditions are formulated taking into account the interaction of the cutting tool and the 

surface of the object under consideration; 

4. An approach is proposed for reducing three-dimensional problems of cutting cylindrical bodies to 

the corresponding two-dimensional problems.  

5. The resulting heat transfer formulas take into account the possibility of additional heat from the 

impact of the cutting tool on the surface of the objects under consideration; 

6. The developed model and approach of thermomechanical processing of metals allows us to solve 

the related problem of thermodynamics to determine the stress-strain state and distribution patterns of 

the temperature field and in the formed chips after cutting. 
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