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Abstract. The paper considers a circular cylindrical three-layer shell of arbitrary thickness 

from a viscoelastic material. It is believed that it consists of two outermost bearing layers and a 

middle layer between them, the materials of which are generally different. The problem of 

unsteady torsional vibrations of such a shell with rigid contact between the layers is 

formulated. Proceeding from the assumption that there is a rigid contact between the layers, the 

dynamic and kinematic contact conditions of the problem are formulated.  On the basis of 

exact solutions in transformations of the three-dimensional problem of the linear theory of 

viscoelasticity for a circular cylindrical three-layer shell, a mathematical model of its unsteady 

torsional vibrations has been developed. The proposed model includes the derivation of the 

general equations of torsional vibrations of the shell with respect to two auxiliary functions, 

which are the main parts of the torsional displacement of the points of some intermediate 

surface of the middle layer of the shell. Along with the equations, an algorithm for calculating 

was created that allows, based on the results of solving the equations of vibration, to 

unambiguously determine the stress-strain state of the shell and its layers in their arbitrary 

sections. 

1. Introduction 

Dynamic calculation of shells is one of the mathematically difficult areas of deformable body 

mechanics. Therefore, it is natural to switch to a simplified model for calculating shells, which implies 

reducing the three-dimensional in spatial coordinates of the problem of the theory of shells to two-

dimensional [1]. To reduce a three-dimensional problem to a two-dimensional one, various methods 

and approaches are used, using various simplifying hypotheses and prerequisites of a mechanical and 

geometric nature [2]. In the studies of many authors, it is indicated that the hypotheses and 

preconditions used in the construction of the theory, together with simplifications, lead to significant 

disadvantages and errors [3]. It should be emphasized that this study contains scientific works devoted 

to the creation of refined theories of plates, shells and rods, in particular, circular cylindrical shells, as 

well as a detailed review of various directions of this problem. In the classical and refined theories of 

plates and shells, the displacements of the middle surface of the shell are taken as the main unknown 

functions. In addition, when constructing new theories of shell vibrations, they try to derive refined 

equations of vibrations that take into account certain factors of a physical, mechanical or geometric 
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nature. Depending on the factors taken into account, the methods for deriving the equations of 

vibration, based on the dynamic theory of elasticity, are divided into several directions [4].  
One of the main directions of methods for reducing the three-dimensional in spatial coordinates of 

the problem of the theory of shells to the two-dimensional is the method of using general solutions in 

transformations [5]. In [6], this method was applied to substantiate the method of power series in the 

study of oscillatory processes in degenerate systems. The method is based on the use of integral 

transformations in coordinate and time, and the use of general solutions with their subsequent 

expansion in power series for approximate satisfaction of the dynamic conditions specified on the 

boundary surfaces of the elastic system under consideration [7, 8]. The essence of the method is to 

study the constructed solutions under various types of external influences and to find out the 

conditions under which the displacements or their "main parts" satisfy simple oscillation equations, 

and to find an algorithm that allows calculating the approximate field values from the field of these 

"main parts" displacements and stresses in any section for an arbitrary moment of time [9].  

An essential and successful application of this method to problems of the dynamics of circular 

cylindrical shells was obtained in [10]. General equations of vibrations of rods, plates and shells are 

obtained in them, taking into account various rheological, anisotropic, temperature, inhomogeneous 

and other properties of the material, as well as with variable geometry of the section, variability of 

stiffness and other factors. The works [11,12] are also devoted to the generalization of this method to 

three-layer plates of an asymmetric structure, quadrangular in plan, where the equations of symmetric 

[11] anti-symmetric [12] unsteady oscillations are obtained, suitable for engineering calculations. 

Recently, attention has been paid to research based on vibrational and frequency analysis of two-layer 

and three-layer cylindrical shells made of functionally graded materials [13] and interacting with a 

viscous fluid [14]. Carrying out similar studies, but taking into account more complex physical and 

mechanical properties, in particular viscoelastic, are also devoted to works [15-17].  

The analysis of vibrations of elements of engineering structures, such as rods, plates and shells, 

based on both classical (Kirchhoff-Love) and refined (Timoshenko-type) theories is relevant and is 

carried out at the present time [18,19]. At the same time, in most of these studies, the tendency to take 

into account the inertia of rotation, transverse shear deformation, and the multilayer structure prevail. 

In addition, a fairly large number of studies are carried out, where the influence of interacting 

deformable media [20], anisotropic, temperature and other physical and mechanical properties of the 

material are taken into account.  

In monograph [21], the general equations of longitudinal and transverse vibrations of viscoelastic 

plates and rods of quadrangular and circular cross sections, as well as taking into account the 

environment and friction forces, are derived. The anisotropic properties and temperature of the plates 

and rods were taken into account (related theory). In [22], this method was developed for a circular 

cylindrical shell interacting with the deformable medium surrounding the shell and contained in the 

shell cavity by an ideal liquid, taking into account the viscoelastic properties of the material and with 

ideal contact between the shell and the liquid. In it, for the first time, an intermediate surface was 

introduced as the main surface, carrying information about the vibrations of the layer and passing, in 

limiting cases, to the middle, inner, outer or any other surface of the shell, depending on the values of 

a certain parameter   having a continuous bounded spectrum of values.  

Within the framework of this article, a circular cylindrical three-layer viscoelastic shell is 

considered. The problem is posed of studying its unsteady torsional vibrations on the basis of the 

above method of exact solutions in transformations. The construction of a mathematical model is 

envisaged, including the derivation of general and refined equations of oscillation and the creation of 

an algorithm that allows determining the stress-strain state of an arbitrary section of the shell in 

coordinate and in time from the field of the sought functions. The results obtained, in particular and 

limiting cases, will be compared with the known results of the authors [22]. 
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2. Methods 

2.1.  Problem Statement 

In a cylindrical coordinate system  , ,r z  a three-layer circular cylindrical shell made of a viscoelastic 

material is considered. It is believed that the structure of the shell, taking into account the action of 

dynamic loads on it, will be such when the bulk of the rigid material in the form of two layers, 

hereinafter referred to as load-bearing layers, is separated by a certain distance using a thin wall or 

third layer. The third middle layer keeps the bearing layers at a distance equal to its thickness, carries 

out their joint work and can be made of the same material as the bearing layers. We direct the Oz axis 

of the coordinate system along the shell symmetry axis perpendicular to the cross section and number 

the layers as shown in Fig. 1. By a and b we denote the inner and outer radii of the shell, and by r1 and 

r2 - the inner and outer radii of the middle layer. When deriving the equations of oscillations, we will 

assume that both the cylindrical shell as a whole and the layers strictly obey the mathematical theory 

of viscoelasticity and, in the exact formulation, are described by its three-dimensional equations in a 

linear formulation. The torsional vibrations of the shell are axisymmetric, and therefore the 

displacements and deformations of the points of the layers, and, consequently, the stresses, do not 

depend on the angular  

 

 
Figure 1. Cross section of the shell 

coordinate. Only displacements mv , stresses ( )m

r , ( )m

z  and 

deformations ( )m

r , ( )m

z  will be nonzero. Here and below, the 

index m takes the values 0, 1, 2. Therefore, in the future, we 

will not emphasize every time, implying that this is always 

the case. The dependencies between the nonzero components 

of stresses and strains at the points of the layers of a circular 

cylindrical three-layer shell are assumed to be given in the 

form [24] 
     ;2,,, m

ijm

m

ij Rtzr  
   
 i j ;  , , ,i j r z , 

where mR -viscoelastic operators equal to 
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m - rotation coefficients (Lame) of layer materials,   mK -kernel of integral operators. It is 

assumed here that the viscoelastic operators mR  are invertible and their kernels   mK  are 

arbitrary. Taking into account the axisymmetry of the problem, the equations of motion of the points 

of the layers, as cylindrical three-dimensional bodies, in the absence of bulk forces have the form. 
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where mv  are the twisting displacements of the points of the layers. These equations in the potentials 

of transverse waves ),,( tzrm  are written as 
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2
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                                      (1) 

where 1m   at 
1rra  , 0m  at 

21 rrr   and 2m  at ;2 brr   m -density of layer materials;  -

three-dimensional Laplace operator in a cylindrical coordinate system 
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In this case, displacements and deformations are expressed through potential functions, from which 

it follows that the torsional displacements of the points of the layers mv  depend only on the potentials 

m  and are equal 

r
v m

m






,   .2,1,0m                                                     (2) 

It is assumed that at 0t   the shell is at rest, and at the moment 0t  , stresses are applied to its 

boundary surfaces, causing its torsional vibrations, i.e. the boundary conditions are considered to be 

at ar     
     ;,,, 11 tzFtza rr            at  br       

     tzFtzb rr ,,, 22

                          (3) 

In addition, according to the conditions of rigid contact on the boundary surfaces between the layers, 

the conditions of equality of mixing and stresses must be satisfied, i.e. 

at 1rr             tzrvtzrv ,,,, 1110  ,      tzrtzr rr ,,,, 1

1

1

0

  
                                       

(4) 

at  2rr 
          ,,,,, 2220 tzrvtzrv 

    
       .,,,, 2

2

2

0 tzrtzr rr   
                               

(5) 

The initial conditions of the problem at t = 0 are assumed to be zero, i.e. 

.0
),,(

),,( 





t

tzr
tzr m

m


                                                    (6) 

2.2. Derivation of the Vibration Equations 

To solve with the formulated problem of torsional vibrations of a three-layer cylindrical viscoelastic 

shell, the functions of external influences in the boundary conditions (3) are considered in the class of 

functions represented in the form [6] 

 
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Here (l) is an open contour in the plane p  adjacent to the right to the section  
0

,
0

 ii  of the 

imaginary axis. In addition, the functions 
  tz
i

rF , , 
  tzF i

rz ,  and 
  tzF i

r ,  are assumed to be such 

that the functions 
  tzf i

r , , 
  tzf i

rz ,  and 
  tzf i

r ,  (i=1,2) are negligible outside the region 

 .Im,0 00  pkk  Similarly to (7), the potential functions  2,1,0, mm  in formulas (6) 

can also be represented in the form 
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In this case, representations (8) allow, if the above conditions are satisfied with respect to the 

integrands, to differentiate the functions m  as needed, both with respect to coordinate and with 

respect to time. Substituting the last representation into the wave equations of motion of the points of 

the layers, we obtain the ordinary differential Bessel equations for the transformed potential functions 

m~  
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   ,

~ 1222  mmm RPk      ,)(
~

1
~

pKR mmm        .

0

)(
~

)(
~

dt
pt

etKpK mm





 
 

The general solutions of equations (9) are 

,)2,1,0();()()(~
0

)2(

0

)1(  mrKBrIBr mmmmm                                (10) 
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where ),2,1(),()( ipkB i

m arbitrary, relative to the variable r , constants. 

Our further task is to express all components of stresses and displacements at the points of all three 

layers through the obtained general solutions (10). For this purpose, we represent stresses , r
 as well 

as (7) 
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r                                  (11) 

and substitute representations (7), (8), and (11) into boundary conditions (3), we obtain 
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(12) 

Similarly transformed contact conditions (4) and (5) will have the following forms: 

at 1rr 
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and

 
at 2rr 
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d
     .)
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General solutions (10) for all three layers have the same structure, taking into account the 

boundedness of solutions at 0r  and r simultaneously. In this case, the boundaries of the first 

layer are equal to a and 
1r , .1rra  . It is bounded from below (from the inside) by a surface ,ar 

which in the limit can tend to zero, i.e. ,0a but it cannot exceed the values 
1r  in any way, i.e. 

cannot strive for infinity. Therefore, when writing a general solution to the potential function of the 

first layer - (s1), one can restrict oneself to taking into account its boundedness only at t = 0. Based on 

this, we take the general solution for the first layer in the form 

);()(~
101 rAIr    ),( 1rra                                               (15) 

where A is the constant of integration. 

Similarly, the boundaries of the second, outer layer are cylindrical surfaces 
2rr   and  br  ; 

brr  .2
. It is bounded from above (from the outside) by the surface br  , the radius of which can 

tend to infinity, i.e. .b  On the other hand, the inner surface of this layer cannot be pulled to a 

straight line, b.c. this would lead to a uniform round rod with a radius br  . Therefore, in the general 

solution for the potential function of the second layer )(~
2 r , we can restrict ourselves to taking into 

account its boundedness only for the case .r  Based on this, we take the general solution for the 

second layer in the form  

)(),()(~
2202 brrrСКr                                         

(16) 

For the middle layer, we take a general solution, taking into account the fact that our solution, in 

the absence of two outer layers, should go over into the known solution for a homogeneous cylindrical 

layer, bounded at 0r and r , i.e. 

  .),()(~
210020010 rrrrКBrIBr                                          (17) 

Thus, the number of integration constants to be determined from the contact conditions is reduced 

to two A and C. Therefore, there is no need for four contact conditions (4) and (5). Taking this 

circumstance into account, we restrict ourselves to only two contact conditions, leaving in (4) - (5) 

only the conditions of equality of the stress components. Substituting solutions (15), (16), and (17) 

into the transformed boundary (12) and contact (13) and (14) conditions, we obtain 
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From the last two equations, we find the constants A, C and substitute them into the first two 

equations. Next, we introduce the following notation 

,
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Then the boundary conditions can be written as 
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Let us express the transformed displacements of layers mv~ )2,1,0( m  in terms of solutions (15) - 

(17). To do this, it is sufficient to substitute in formulas (2) for ),,(~ pkrvm , the solution (15) - (17). 

We get 
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Further, we use standard expansions in power series of Bessel functions )( 01 rI  and )( 01 rK  in 

powers )( 0r . We get 
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Here )(n  the logarithmic derivative of the Gamma function 
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In the classical study, the vibrations of a cylindrical shell are assumed to be the displacements of 

points on the middle surface of the shell. However, this choice is not the only one. For example, when 

considering a thick-walled shell, it is necessary to choose a surface that for a rod goes into the center 

line, and for thin shells into the middle surface. On the other hand, in experimental studies, 

information is obtained on the displacements of points on the outer or inner surface of the shell, by 

which it is necessary to determine the stress-strain state of the shell itself. In this regard, following 

work [25], we will take as the sought values of the displacement and stress at the points of a certain 

intermediate surface of the middle layer of a three-layer shell, the radius   of which (Fig.1.1) is 

defined in the gap ],[ 21 rr as 
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where the constant   satisfies the inequality 
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Note that  can be the radius of the contacting surfaces between layers at 
1r  or .2r  This 

“intermediate” surface passes into contact surfaces between layers, with values   equal to 

,2,1,2
2

1

1

2

2

1

1

2

2

1

r

r

r

r

r

r

r

r

r

r
  

and for 
2

21 rr 
  it passes into the middle surface of the filler. At 

21 rr  , there is no middle layer and 

the radius of the intermediate surface   in this case passes into the radius of the contact surface 

between the bearing layers. For unknown values, we take the values of displacement and stresses 
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calculated at the points of the introduced “intermediate” surface of the middle layer. We put r  in 

the expression of the transformed displacement (22) and select its main parts, assuming that they are 

determined as the first terms of a converging power series, we obtain  

);
2
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1
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We introduce the following notation [25] 

,
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2
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2
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00
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

                   (23) 

where     .]
2

1
1

2
[ln 0

210  


BBB  

The transformed displacement ),,(~
0 pkrv  is introduced by new functions 

)0(

0
~v  and 

)1(

0
~v  is 

expressed as follows 

   
 
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
          (24) 

Note that if the middle layer is thin (for example, a thin layer of glue, usually applied between layers), 

then we can assume that  .r   Then 








n

k knn

n
n

1

1

1

)1(2
)(  

which is number, for example  0)0(,0 1  n and  at .43)1(,1 1  n  

Similarly, boundary conditions (19) - (20) are expressed through the main parts of the transformed 

torsional displacement 
)0(

0
~v  and 

)1(

0
~v . For combinations of Bessel functions in (18), restricting their 

expansion to zero and first approximations, we obtain 
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We introduce new functions 

 0

0v ,  1

0v  and operators 
n

m  by the formulae 
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Applying the operators in (26) to the left and right side of (25) we get the following equation 
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
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r
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)2)(1(2

1
ln)(


 .                                                                     (28) 

Based on the expressions (9) for  2,1,0mm , it is easy to obtain that the operators ,n

m  

introduced by formulas (26) under the reverse transition according to Fourier and Laplace, in the 

variables z and t, have the following forms  

,...3,2,1;2,1,0,)(
2

2

2

2
1 













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

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
  nm

zt
R

n
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n

m


 

              (29) 

where 
mR

 are the viscoelastic operators of the layer materials. Equations (27) in accordance with 

formulas (29) for the operators  ,...3,2,1;2,1,0  nmn

m , are integro-differential equations of 

unbounded high order. These equations contain the main parts of 
)1(

0

)0(

0 vandv  the torsional 

displacement 0v  of points of a certain “intermediate” surface of the middle layer of a three-layer 

cylindrical shell. The specified "intermediate" surface has a radius, the values of which are enclosed in 

the interval .21 rr    In accordance with the numerical values of the radius, this “intermediate” 

surface can pass into the middle one at 
2

21 rr 
  and contact between the layers of the shell surface 

at  rr ., 21    

Consequently, equations (27), depending on the values of the radius, can be the equations of 

vibration of a three-layer cylindrical shell relative to the main parts of the torsional displacement of the 

points of the middle or contact surfaces of the middle layer. These equations, in the absence of 

external layers, are general equations of torsional vibrations [25] of a circular cylindrical viscoelastic 

shell, relative to the main parts of the torsional displacement of the points of the intermediate surface 

of the shell. The resulting equations have, as indicated above, an unbounded order in derivatives, and 

therefore, in their structures, they contain derivatives of any order with respect to the longitudinal 

coordinate z and with respect to time t. 

2.3. Determination of displacements and stresses 

During torsional vibrations, as emphasized above, displacements mv and stresses 

).2,1,0(,, )()( mm

z

m

r    are nonzero. To determine the stress-strain state of the shell points, it is 

necessary to determine the displacements mv  and stresses 
)()( , m

z

m

r    at these points. This procedure 

must be performed for all three layers of the shell. This will require expressing all displacements and 

stresses through the main parts 
)1(

0

)0(

0 ,vv  of the torsional displacement 0v  points of the intermediate 

surface of the middle layer of the shell. 

First, we determine the displacement 0v  and the stresses 
)0(

 r and 
)0(

 z  of the points of the middle 

layer. To find 0v , it is sufficient to invert expression (24) for 0
~v  with respect to p and k. Applying 

transformations (26) to (24), we obtain 
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)0(
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 (30) 
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According to the results of solving the system of equations (27) i.e. Using the found values of 
)1(

0

)0(

0 , vv it is easy to calculate the displacement ),,(0 tzrv  of the points of an arbitrary section of the 



IPICSE 2020
IOP Conf. Series: Materials Science and Engineering 1030  (2021) 012098

IOP Publishing
doi:10.1088/1757-899X/1030/1/012098

9

middle layer for any moment in time by formula (30) with the desired accuracy along the radial 

coordinate r, for an arbitrary moment in time. 

The torsional displacements of the points of the bearing layers 21 ,vv  should be expressed in terms 

of the main parts 
)1(

0

)0(

0 ,vv . To do this, use expressions (21) for .~,~
21 vv . After some simple 

mathematical calculations, we get 
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where  

      .21
2

1
ln

2

 
r

r
rL  

Expressions (31) make it possible to calculate the torsional displacements of the points of the bearing 

layers using the found principal values of the torsional displacement 
 0

0v  and 
 1

0v  from the results of 

solving the equations of oscillations (27). 

Similarly, formulas are derived for the stress components 
 m

r  and 
 m

z  of all layers, which are 

nonzero  
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The obtained formulas for stresses(33), (34) make it possible to calculate, with a given accuracy, the 

stresses at the points of an arbitrary section of the middle layer of a three-layer shell. The stresses 
 m

r  

and 
 m

z  are determined similarly in the case when m = 1 and m = 2. 

3. Results and Discussions 

The obtained equations of torsional vibrations of a three-layer circular cylindrical viscoelastic shell - 

(27), are general. Several limiting cases and particular types of oscillation equations follow from them. 

3.1. Vibrations of a two-layer viscoelastic shell. 

At 1ra  , the three-layer cylindrical shell transforms into a two-layer shell. The intermediate surface 

of the shell of radius   passes into the intermediate surface of the inner layer of the shell. In this case, 

it should be assumed that the function of external action ),()1( tzFr  acts on the surface 1rr  , and the 

operator .01  Then from the system of equations (27) we obtain the following system of equations 

for a two-layer cylindrical viscoelastic shell 
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
  .22 brrr   

Similarly, one can obtain a system of equations for torsional vibrations of a two-layer cylindrical 

viscoelastic shell, where the main unknowns will be the main parts of the torsional displacement of the 

intermediate surface of the outer layer. To do this, it suffices to assume that there is no outer layer. In 

this case, br 2  and the system of equations (27) will be written as 
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If the inner and outer layers of the cylindrical shell are absent, i.e. the shell is homogeneous (single-

layer), then 1ra   and 2rb   should be set in general equations (27). In this case, we will have a 

system of equations 
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   .21 rrr                          (35) 

In the last equations, the integro-differential operators )2,1;2,1,()(  ikjrC ijk
 are found by formulas 

(28). Note that the resulting system of equations for torsional vibrations of a cylindrical homogeneous 

shell (35) exactly coincides with the system of equations derived in [21]. 

3.2. Cylindrical shell with a thin middle layer 

If   112 rr , where  > 0 is a small parameter, then the middle layer of the shell is thin (for 

example, a thin layer of glue, usually applied between layers). In this case, the values of  /ln ir  can 

be assumed to be zero. Then expression (28) for  irn,2  is simplified and takes the form 
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Consequently, the equations of torsional vibrations of a three-layer cylindrical shell with a thin middle 

layer are also equations (27), but with a different value for  irn,2  determined by the last formula. 

3.3. Three-layer elastic shell 

If the materials of the layers are elastic, then in the expressions for viscoelastic operators the equalities 

will take place 0)( tK m
, and therefore, we will have .mmR    Then, replacing the integral 

operators 
1R  and 

2R , respectively, by the Lamé coefficients 1  and 2 , we obtain the system of 

equations 
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In this case, the integro-differential operators )(n

m  defined by formulas (29) * transform into the 

following differential operators 
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                  (37) 

Where
mb , ( 2,1,0m ) are the velocities of propagation of transverse waves in the materials of the 

layers. 

Thus, the system of equations (36), taking into account (37), are general equations of torsional 

vibrations of a three-layer cylindrical elastic shell. In particular cases, from equations (36) it is easy to 

obtain the equations of a two-layer elastic shell and a three-layer elastic shell with a thin middle layer 

similar to the limiting cases considered above. 
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3.4. Round viscoelastic rod 

Consider one more limiting case that follows from the results obtained, torsional vibrations of a 

uniform round rod. Let's assume that the shell is homogeneous. Then the equations of its torsional 

vibrations are described by the system of equations (35). In the case when 01 r , the homogeneous 

cylindrical shell transforms into a round rod of radius 2r . Equality to zero of the inner radius of a 

homogeneous shell implies equality to zero of the radius of the intermediate surface of the shell, i.e. 

.0  Consequently, in this case, the intermediate surface of the shell passes into the centerline of the 

rod. Therefore, the function of external influences  tzF ,)1(

2
 should be considered equal to zero. Then 

the first equation of system (35) is satisfied identically. Only the second equation remains for the 

desired function 
)0(

0v . Taking into account the above factors, the equation of torsional vibrations of a 

circular viscoelastic rod of radius ,2r  following from (35), has the form 

  tzFRvrC ,)( )2(

2

1

0

)0(

0212 
 ,           ,0 2rr   

or in expanded form we obtain the equation 

  tzFRv
nn

r

n

n
n

,
)!2(!

)2/(
2 )2(

2

1

0

)0(

0

0

1

0

22

2
 











 ,                                          (38) 

where 
)0(

0v is the main part of the torsional displacement of the center line of the rod. In this case, 

integro-differential operator (29) takes the form 

,...3,2,1,)(
2

2

2

2
1

000 























  n

zt
R

n

n 
 

 

In the elastic case, assuming 00  R  and limiting ourselves to zero, first, and other approximations 

in the infinite sum (38), one can obtain classical (Bernoulli-Euler type), refined (Timoshenko type) 

and other equations of a higher order. 

4. Conclusions 

- a new technique has been created for deriving general, refined and approximate equations of 

torsional vibrations of a circular cylindrical three-layer viscoelastic shell of an asymmetric structure 

and arbitrary thickness; 

-proposed a new mathematical model of torsional vibrations of a circular cylindrical three-layer 

viscoelastic shell, including general and refined equations of vibration and an algorithm for calculating 

the stress-strain state of an arbitrary point of the shell. The oscillation equations in their structures 

automatically take into account the influence of rotational inertia and transverse shear deformation and 

are derived for external arbitrary dynamic loads acting on the shell surfaces. In the absence of external 

layers, the results obtained completely coincide with the results of [22] and are general equations of 

torsional vibrations of a circular cylindrical viscoelastic shell, relative to the main parts of the torsional 

displacement of the points of the intermediate surface of the shell; 

- new general, refined and approximate equations of torsional vibrations of a circular cylindrical 

three-layer elastic shell are proposed. The resulting equations have, as indicated above, an unbounded 

order in derivatives, and therefore, in their structures, they contain derivatives of any order with 

respect to the longitudinal coordinate z and with respect to time t. Under constraints in infinite series 

by zero, first and other approximations, oscillation equations of the Kirchhoff Love type, Hermann-

Mirsky [3] and other refined equations of higher orders follow from them; 

-algorithms have been developed that allow to unambiguously determine the stress-strain state at 

any point of an arbitrary section of a circular cylindrical three-layer viscoelastic shell based on the 

results of solving the corresponding problems of its axisymmetric vibrations; 

-сreated a new method for dynamic calculation of circular cylindrical three-layer elastic and 

viscoelastic shells on the action of various external dynamic loads. The method consists in deriving 
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oscillation equations, both refined of the Timoshenko type, and the classical Kirchhoff-Love type, and 

in the development of an algorithm for calculating the Stress-Strain State of the system. 
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