
IOP Conference Series: Materials Science and Engineering

PAPER • OPEN ACCESS

Vibrations of multilayer composite viscoelastic
curved pipe under internal pressure
To cite this article: Ismoil Safarov et al 2021 IOP Conf. Ser.: Mater. Sci. Eng. 1030 012073

 

View the article online for updates and enhancements.

You may also like
Heat exchanger design based on minimum
entropy generation
S Bucsa, D Dima, A Serban et al.

-

MST Best Paper Award for 2004
Patrick Gill

-

Safe Operation of All-Wheel Drive
Articulated Dump Trucks on Large Slopes
in Deep Open-Pit Mines
A V Glebov

-

This content was downloaded from IP address 84.54.86.133 on 28/11/2023 at 20:32

https://doi.org/10.1088/1757-899X/1030/1/012073
/article/10.1088/1757-899X/595/1/012020
/article/10.1088/1757-899X/595/1/012020
/article/10.1088/0957-0233/16/12/E01
/article/10.1088/1755-1315/666/2/022014
/article/10.1088/1755-1315/666/2/022014
/article/10.1088/1755-1315/666/2/022014


Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

IPICSE 2020
IOP Conf. Series: Materials Science and Engineering 1030  (2021) 012073

IOP Publishing
doi:10.1088/1757-899X/1030/1/012073

1

Vibrations of multilayer composite viscoelastic curved pipe 

under internal pressure 

Ismoil Safarov
2
, Muhsin Teshaev

3,4 
 and  J A Yarashev

1 

1
Tashkent Institute of Irrigation and Agricultural Mechanization Engineers, 39, 

K.Niyazi str., Tashkent city 
2
Tashkent Chemical-Technological Institute, 32, Navoi str. Tashkent sity, 

Uzbekistan  
3
BukharaBranch of Institute of Mathematics AS RUz., 11, M.Iqbol street, Bukhara 

city, Republic of Uzbekistan 
4
Bukhara branch of the Tashkent Institute of Irrigation and Mechanization 

Engineering in Agricultural, 32, Gazli highway, Bukhara city, Republic of 

Uzbekistan,  

 

E-mail: safarov54@mail.ru, muhsin_5@mail.ru   

Abstract. The paper presents a mathematical statement and the methods to solve the problem 

of natural vibrations of thin-walled multilayer composite viscoelastic curved pipes under 

internal pressure. A brief overview of well-known publications devoted to this problem is 

given. The stress state and flexibility of the pipes are investigated for two types of boundary 

conditions, taking into account internal pressure and viscoelastic properties of the material 

and geometrical and physical parameters of the pipe. The paper provides the results of 

numerical analysis of the spectra of the lower complex eigenfrequencies of the pipe 

depending on internal pressure, geometrical, structural parameters, rheological properties and 

boundary conditions. Ten lower eigenfrequencies were found and the corresponding 

vibration modes constructed. The paper presents a comparison of solution results with known 

solutions and experimental results. 

1. Introduction 

The problem of vibration is a relevant one in the oil-and-gas and aircraft industries. Pulsating flows 

and the intense vibrations initiated by them occur in power plants too [1]. An analysis of the 

pipelines behavior in nuclear power plants showed [2, 3], that the frequencies of vibrations vary from 

0.5 to 1000 Hz, and the vibration amplitudes are 3-5 mm. The phenomenon of pulsations in the 

coolant circulation circuit [4] and equipment vibrations are the most acute. Cases of the loss-of-

piping integrity are known. The fracture pattern indicates the fatigue nature of breaking. The origin 

and development of cracks is associated with elastic vibrations and hydraulic shock. Thus, the 

problem of pipelines is gaining important economic importance. When the frequencies of the 

excitation spectrum coincide with the eigenfrequencies of the pipeline, resonance develops in the 

system. One way to reduce the amplitudes of vibrations is to detune the dynamic system from 

resonances at the design stage [5, 6]. The eigenfrequencies of the pipeline should not coincide with 

the fundamental frequencies of the excitation spectrum. For this, a thorough calculation of the 
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hydrodynamic loading parameters and analysis of the dynamic stability of a pipeline using classical 

mechanics methods are needed [7, 8]. At present, regulatory documents [9–11] and reference books 

[12, 13] contain methods for calculating the static and dynamic parameters of pipelines made of 

homogeneous and isotropic materials. In these cases, as a rule, simplified rod models were used. To 

calculate the dynamic characteristics of curved pipes, the linear theory of rod vibrations[14, 15] and 

the formulas for circular arches[16] [17] were used. The rod forms of vibration are taken into 

account. Obviously, this approach is justified for thick-walled structures only. Generally, for 

complex structures, a plane or spatial design scheme of the theory of elasticity were used [27-29], the 

solution to the problem of natural vibrations for such structures becomes greatly complicated. As is 

well-known, the development and creation of composite structures and methods to assess their 

dynamic characteristics is a more complex problem. At that, the subject of design is the material 

itself, or rather its structure. The new material is designed taking into account technological 

capabilities for a given structure design and a given load. Only in this unity can the potentialities 

embodied in the composite be realized. However, the method for calculating the dynamic parameters 

of multilayer pipes, considering the layered fiber structure and anisotropy of the material, is currently 

practically absent. The effect of inhomogeneity in the material structure and the initial ovality and 

non-uniform thickness of the cross section on the stress state and dynamic properties of composite 

pipe, has not been adequately studied.  
In this regard, the task of studying the dynamic properties of multilayer pipes and pipelines made 

of composite materials is of great practical importance. The need to solve an important scientific and 

technical problem related to the development of methods for calculating and designing multilayer 

composite pipes and pipelines in order to improve their dynamic properties and increase reliability 

determines the relevance of this study.  

2. Statement of the problem 
Consider a viscoelastic composite pipe whose centerline is an arc of a circle of radius R and length L. 

The pipe has a cross-section with a nominal average radius r and wall thickness h. Let us restrict 

ourselves to thin-walled long pipes of small curvature: ℎ/𝑟 ≤ 1/20, 𝐿/𝑟 ≥ 4, 𝑟/𝑅 ≤ 1/5. The pipe 

is considered as an element of a pipeline that conveys fluid. Consider the internal flow as a 

homogeneous one, the fluid - as a single-phase, ideal and incompressible one. Rigid weightless 

flanges that rest on fixed hinged supports close the end sections of the pipe.  

The boundary conditions at 𝑠 = 0 and 𝑠 = 𝐿 at points with coordinates (0 ≤ 𝑠 ≤ 𝐿)  𝜙0 =
900 and 𝜙0 = 2700 are zero, i.e. the displacement components are 𝑢 = 𝜗 = 𝑤 = 0. To describe the 

viscoelastic properties of the body material, we accept the linear hereditary Boltzmann–Volterra 

theory; physical relations for the m-th viscoelastic element of the system are defined as [18]  

 

𝜎𝑚𝑘
𝑛 (𝑡) = 𝜆̃𝑛𝛩𝑛(𝑡)𝛿𝑚𝑘 + 2𝜇̃𝑛𝜀𝑚𝑘

𝑛 (𝑡) ,                                      (1) 

where 𝜆̃𝑛, 𝜇̃𝑛 are the Volterra integral operators. Poisson's 𝜈𝑛 ratio in the proposed statement of the 

problem is assumed constant. This means that for a structurally homogeneous viscoelastic system, 

the modes of natural vibrations are equal to the eigenvectors of the corresponding elastic problem 

[19, 20]. Expressing integral operators from the well-known formulas in terms of  𝐸̃𝑛, 𝜈𝑛, and 

considering that 𝜈𝑛 = 𝜈𝑛 = 𝑐𝑜𝑛𝑠𝑡, instead of (1) we get 

𝜎𝑚𝑘
𝑛 (𝑡) =

𝐸̃𝑛

1+𝜈𝑛
[

𝜈𝑛

1−2𝜈𝑛
𝛩𝑛(𝑡)𝛿𝑚𝑘 + 𝜀𝑚𝑘

𝑛 (𝑡)] ,                          (2) 

where  Е̃𝑛   is the Volterra operator of the following form 

𝐸̃𝑛𝜙(𝑡) = 𝐸0𝑛 [𝜙(𝑡) − ∫ 𝑅𝐸𝑛(𝑡 − 𝜏)𝜙(𝜏)𝑑𝜏
𝑡

0
].                         (3) 

Here 𝐸0𝑛 is the instantaneous modulus of elasticity, and 𝑅𝐸𝑛 is the relaxation kernel.  
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Given (1), the time function in equality (3) is ( ) exp( )t i t   with slowly varying 

amplitude. Assuming the smallness of integral term 

0

( )R d 


 , and using the freezing method [21], 

we replace relation (3) with an approximate one: 

𝐸̃𝑛𝜙(𝑡) ≅ 𝐸0𝑗[1 − 𝛤𝑛
𝑐(𝜔𝑅) − 𝑖𝛤𝑛

𝑠(𝜔𝑅)]𝜙(𝑡) ≡ 𝐸̄𝑛𝜙(𝑡),                          (4) 

where 𝛤𝐸
𝐶(𝜔𝑅) = ∫ 𝑅𝐸(𝜏) 𝑐𝑜𝑠 𝜔𝑅 𝜏𝑑𝜏

∞

0
, 𝛤𝐸

𝑆(𝜔𝑅) = ∫ 𝑅𝐸(𝜏) 𝑠𝑖𝑛 𝜔𝑅 𝜏𝑑𝜏
∞

0
 are the cosine and sine of 

the Fourier images of the relaxation kernel of the material, respectively, 
R  is the real value. A three 

parametric relaxation kernel [30]  𝑅𝐸(𝑡) = 𝐴𝑒−𝛽1𝑡/𝑡1−𝛼1 is taken as a sample of a viscoelastic 

material. Present the following forms of motion under given boundary conditions [27,28]: 

𝑤(𝑠, 𝜙, 𝑡) = ∑ ∑ 𝑤𝑚𝑛

∞

𝑛=1

∞

𝑚=1

𝑐𝑜𝑠 𝑛 𝜙 𝑠𝑖𝑛
𝑚𝜋𝑠

𝐿
, 

𝜗(𝑠, 𝜙, 𝑡) = − ∑ ∑
1

𝑛
𝑤𝑚𝑛𝑠𝑖𝑛

∞∑

𝑛=1

∞∑ 𝑠𝑖𝑛
𝑚𝜋𝑠

𝐿

𝑚=1

 

𝑢(𝑠, 𝜙, 𝑡) =
𝜋𝑟

𝐿
∑ ∑

𝑚

𝑛2 𝑤𝑚𝑛
∞
𝑛=1

∞
𝑚=1 𝑐𝑜𝑠 𝑛 𝜙 𝑐𝑜𝑠

𝑚𝜋𝑠

𝐿
 .

                               

(5) 

Here и, 𝜗 and w are the displacement components of the points of the shell middle surface in the 

axial, circumferential, and radial directions. The wavenumbers m and n characterize the vibration 

mode: m is the number of half-waves in the axial direction, n is the number of waves in the 

circumferential direction. 

The following equation determines the kinetic energy of the pipe motion: 

𝐾 =
1

2
𝜌𝑇𝑟ℎ𝑚 ∫ ∫ (𝑢̇2 + 𝜗̇2 + 𝑤̇2)ℎ(𝜙)𝑑𝑠𝑑𝜙

2𝜋

0

𝐿

0
=

1

8
(𝑚𝑇) ∑ ∑ (

𝑛2+1

𝑛2 +
𝑚2𝜋2𝑟2

𝑛4𝐿2 )∞
𝑛=1

∞
𝑚−1 𝑤̇𝑚𝑛

2

     

(6) 

The viscoelastic potential, constructed based on the semi-momentless theory of multilayer thin 

shells and approximations (5), has the form: 

𝛱 =
1

2
𝑟 ∫ ∫ (𝐵1𝑚𝜀1

2 + 𝐷2𝑚𝑘2
2)𝑑𝑠𝑑𝜙

2𝜋

0

𝐿

0

= 

=
𝜋𝐵1𝑚

4
𝑟𝐿 ∑ ∑ [−(

𝑚𝜋

𝐿
)2

𝑟

𝑛2
𝑤𝑚𝑛 +

𝑛 − 2

𝑛 − 1

𝑤𝑚𝑛−1

𝐷
+

𝑛 + 2

𝑛 + 1

𝑤𝑚𝑛+1

𝐷
]

∞

𝑛=1

∞

𝑚=1

2

+ 

+
𝜋𝐷2𝑚𝐿

4𝑟3
∑ ∑ (𝑛2 − 1)2∞

𝑛=1
∞
𝑚=1 𝑤𝑚𝑛

2  .

                                                                       

(7) 

The axial deformation of the wall middle surface has the following form: 

𝜀1 =
1

𝑅
(𝑤 𝑐𝑜𝑠 𝜙 − 𝜗 𝑠𝑖𝑛 𝜙) = 

= ∑ ∑ [−(
𝑚𝜋

𝐿
)2 𝑟

𝑛2 𝑤𝑚𝑛 +
𝑛−2

𝑛−1

𝑤𝑚𝑛−1

𝐷
+

𝑛+2

𝑛+1

𝑤𝑚𝑛+1

𝐷
]∞

𝑛=1
∞
𝑚=1 𝑐𝑜𝑠 𝑛 𝜙 𝑠𝑖𝑛

𝑚𝜋𝑠

𝐿
.

     

(8) 

The change in wall curvature in the circumferential direction is 

𝑘2 =
1

𝑟2 (
𝜕2𝑤

𝜕𝜙2 −
𝜕𝜗

𝜕𝜙
) = −

1

𝑟2
∑ ∑ [(𝑛2 − 1)𝑤𝑚𝑛]∞

𝑛=1
∞
𝑚=1 𝑐𝑜𝑠 𝑛 𝜙 𝑠𝑖𝑛

𝑚𝜋𝑠

𝐿
.

       

(9) 

The potential of external forces is 

𝑊 =
1

2
𝑝𝑚𝛥𝑉 =

1

4
𝜋𝑝𝑚𝐿 ∑ ∑ [(𝑛2 − 1)𝑤𝑚𝑛

2 ]∞
𝑛=1

∞
𝑚=1  .

                   

(10) 

Here 𝛥𝑉 is the change in internal cavity volume due to the pipe wall bending. Under pipe vibrations, 

the pressure mp  resists the wall bending, D = 2R.  

Using the Lagrange equations [22]: 
𝑑

𝑑𝑡
(

𝜕𝐾

𝜕𝑤̇𝑚𝑛
) +

𝜕𝛥

𝜕𝑤̇𝑚𝑛
−

𝜕(𝐾−𝛱−𝑊)

𝜕𝑤𝑚𝑛
= 𝑄𝑚𝑛, 
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and dependences (2) - (10), we obtain a coupled system of homogeneous differential equations with 

complex coefficients of the form 
[𝐴]{𝑤̈} + 𝐷1𝑚(1 − 𝛤𝑛

∘(𝜔𝑅))[𝐶]{𝑤} = 0   ,                     (11) 

where 𝛤𝑛
∘(𝜔𝑅) = 𝛤𝑛

𝐶(𝜔𝑅) + 𝑖𝛤𝑛
𝑆(𝜔𝑅) , 𝐷1𝑚 =

ℎ𝑚

1−𝜈12𝜈21
𝐸02, 𝐸02 is the instantaneous elastic 

modulus, [𝐴] is the diagonal matrix, the elements of which are determined by recurrence formulas: 

𝑎𝑛𝑛 =
𝑛2+1

𝑛2 +
𝑚2𝜋2𝑟2

𝑛4𝐿2 , [𝐶] is the square matrix, the elements of which are determined by the 

following recurrence formulas: 

𝑐𝑛𝑛 =
𝑛2 + 1

𝑛2
+

2𝛽𝑚
2

𝑛4
+

1

6
𝜍𝜆2(𝑛2 − 1)(𝑛2 − 1 + 3𝑝𝑚

′ ), 

𝑐𝑛𝑛+1 = −2𝛽𝑚

𝑛2 + 𝑛 + 1

𝑛2(𝑛 + 1)2
, 

с11 = 2𝛽𝑚
2 , 𝑐𝑛𝑛+2 = −2𝛽𝑚

𝑛2+2𝑛−3

2𝑛(𝑛+2)
.

                                                        

(12) 

Here 𝛽𝑚 = (
𝑚𝜋

𝐿
)2𝑟𝑅 and 𝑝𝑚

′ =
𝑝𝑚𝑟3

3𝐷2𝑚
  are the dimensionless parameters, 𝐷2𝑚 =

ℎ𝑚
3

1−𝜈12𝜈21
𝐸02. 

Now the problem of natural vibrations of a viscoelastic curved pipe made of composite materials can 

be formulated as follows: it is required to find a nontrivial solution, i.e. a nonlinear complex 

parameter 
2 and a function w satisfying the homogeneous system of differential equation (11) with 

complex coefficients. 

3. Solution method 

To solve equation (11), note that the analysis of the structure of the matrix [C] shows that it 

corresponds to generalized coordinates related to each other. 

The interaction of the generalized coordinates is due to elastic constraints, the intensity of which 

is characterized by off-diagonal elements of the matrix [C] and depends on the pipe length 𝐿 = 𝜃0𝑅, 

where 𝜃0 is the angle at center. The shorter the pipe, the larger the number of half-waves т in section 

L; and the greater the curvature parameter r/R, the stronger their interaction. As the radius of 

curvature R increases, the interaction of the generalized coordinates wmn becomes weaker. At l / R => 

0, a passage to the limit of a thin-walled cylindrical shell occurs. In this case, a system of 

independent equations is obtained from equations (11): 

𝑤̈𝑛 + 𝛺𝑛
2𝑤𝑛 = 0   (n=2, 3, 4....), 

𝛺𝑛
2 = 𝜔𝑛

2(1 − 𝛤𝑛
∘(𝜔𝑅) ),  𝜔𝑛

2 =
2𝜋𝐷2𝑚𝑛2(𝑛2−1)(𝑛2−1+3𝑝̃𝑚)

𝑚𝑇𝑟3(𝑛2+1)
,

        

(13) 

where 𝛺𝑛
2- is the complex circular eigenfrequency.   

At 𝑤𝑛(𝑡) = 0, (n=2, 3, 4....) we get a system of equations of bending vibrations of a hinged-

supported straight rod: 

𝑤̈𝑚 + 𝛺𝑚
2 𝑤𝑚 = 0 (m=1,2, 3,.), 

where 

𝛺𝑚
2 = (

𝑚𝜋

𝐿
)2√

𝐸01(1−𝛤𝑛
∘(𝜔𝑅))

𝑚𝑇(1−𝜈12𝜈21)
. 

At 𝜈12 = 0  or 𝜈21 = 0 (𝛤𝑛
∘(𝜔𝑅) = 0), the frequency 𝛺𝑚 expression coincides with the exact solution 

[23]. Varying (7) and (10) with respect to the generalized coordinates 𝑤𝑚2, from the minimum 

condition for the total potential energy of the system we find: 

 𝑤𝑚2 =
12𝑟𝑅𝜆2𝑚0

10+12𝜍0(1−𝛤𝑛
∘(𝜔𝑅))(1+𝑝𝑚

′ )+𝛽𝑚
2 𝑤𝑚1,                  (14) 

where   𝑚0 =
𝑚2𝜋2

𝐿2 , 𝜆 =
𝑟2

𝑅ℎ
, 𝜍0 =

𝐸02

𝐸01
.  

The coefficient of a composite curved pipe flexibility increase is determined by the formula [24] 

𝑘 =
𝑚0

′

𝑚0
=

10+12𝜍0(1−𝛤𝑛
∘(𝜔𝑅))(1+𝑝𝑚

′ )𝜆−2+𝛽𝑚
2

1+12𝜍0(1−𝛤𝑛
∘(𝜔𝑅))(1+𝑝𝑚

′ )𝜆−2+𝛽𝑚
2 .                  (15) 
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Here 0m  and 0m  are the changes in the pipe axis curvature with / without considering the Karman 

effect, respectively. 

4. Solution results and discussion 

4.1 Flexibility assessment of viscoelastic composite curved pipes. 

Consider the flexibility of viscoelastic composite pipe samples depending on boundary conditions 

and geometrical parameters. Table 1 presents geometrical characteristics of samples. 

Table 1. Geometrical characteristics of samples. 

Sample 

number 
R,mm r, mm h, mm 0  r/R h/r   

1 835 80 4,2 180° 1/10 1/20 0,50 

2 1250 80 4,2 180° 1/15 1/20 0,70 

 Structure samples considered were made of Kevlar 49/PR-286 organic plastic with physical 

characteristics  𝐸𝛼 = 64,10𝐺𝑃𝑎, 𝐸𝛽 = 5,38𝐺𝑃𝑎, 𝐺𝛼𝛽 = 2,07𝐺𝑃𝑎, 𝜈𝛼𝛽 = 0,35  and the relaxation 

kernel parameters  𝐴 = 0,048; 𝛽1 = 0,05; 𝛼1 = 0,1. The number of monolayers is six. Effective 

elastic constants with a wall, as a multilayer orthotropic body, depending on reinforcement, are given 

in [25]. Table 2 presents the calculated values of the flexibility characteristics of a composite pipe 

with free edges; the values were calculated according to the formula (15). The results obtained 

showed that the greater the initial curvature of the pipe, the stronger the Karman effect. 

Table 2. Design values of flexibility characteristics of the pipe with free edges 

Sample 

number 
Coefficients of flexibility increase k depending on reinforcement angles m  

 

 
50° 60° 70° 80° 90° 

1 2,5 1,67 1,35 1,26 3,25 

2 1,74 1,31 1,16 1,12 2,6 

4.2 Analysis of complex eigenfrequencies of vibrations  

Consider the spectra of lower complex frequencies and the corresponding eigenmodes of hinged-

supported multilayer viscoelastic curved pipes with parameters: r = 80 mm, h / r = 1/40, and 

relaxation kernel parameters: 𝐴 = 0,048; 𝛽1 = 0,05; 𝛼1 = 0,10, at reinforcement angle of  

𝜙𝑚 = ±800, depending on initial curvature r/R = l/40, 1/20, 1/15. Pipes have the same length 𝐿 = 

2.5m, but different bending angles: 𝜃0= 45 °, 90 °, 135 °, 180 °. The material is organic plastic 

Kevlar 49/PR-286. The number of monolayers is six. The solution of homogeneous differential 

equations (11) is sought in the form 

{𝑤} = {𝑤𝑚𝑛}𝑒−𝑖𝜔𝑡      ,                                           (16) 
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where 𝑤𝑚𝑛 are the amplitudes of the generalized displacements, 𝜔 = 𝜔𝑅 + 𝑖𝜔𝐼 is the complex 

frequency. 

Substituting (16) into (11), we obtain the following homogeneous algebraic equations 

(−𝜔2[𝐴] + 𝐷1𝑚(1 − 𝛤𝑛
∘(𝜔𝑅))[𝐶]){𝑤𝑚𝑛} = 0. 

The frequency equation of the eigenvalue problem is written as: 

[−𝜔2[𝐴] + 𝐷1𝑚(1 − 𝛤𝑛
∘(𝜔𝑅))[𝐶]] = 0 .                                  (17) 

The roots of characteristic equation (17) are sought by the Mueller method [26].  

Table 3. Change in real part of the complex eigenfrequency depending on initial curvature Rr /  

r/R Real parts of complex eigenfrequencies 1Rm , Hz 

 m=1 m=2 m=3 m=4 

1/10 - 62.41 153.5 515.1 

1/15 - 83.69 170.2 486.6 

1/20 - 94.54 190.9 455.2 

1/40 - 104.6 216.0 433.1 

Straight section 

of a pipe 27.6 110.3 248.3 441.4 

 

Table 4. Change in real part of the complex eigenfrequency depending on angle 𝜃0 

0  Real parts of complex eigenfrequencies, 𝜔𝑅𝑚2, Hz 

 m=1 m=2 m=3 m=4 

45° 247.6 251.6 281.7 269.6 

90° 275.1 281.9 321.7 257.6 

135° 315.6 324.1 366.4 242.8 

180° 364.6 373.7 415.0 228.1 

Straight section of a 

pipe 237.8 243.3 258.6 289.8 

Tables 3 and 4 show the change in real part of complex eigenfrequencies of multi-layered 

viscoelastic curved pipes depending on initial curvature 𝑟/𝑅 and angle 𝜃0, respectively. As seen 

from Table 4, at a decrease in bending angle 𝜃0 the real parts of the lower complex frequency 

(𝜔𝑅𝑚1), corresponding to n = 1 and m = 2,3,4 modes, increase, while the real parts of the higher 

frequency 𝜔𝑅𝑚2 and 𝜔𝑅𝑚3, corresponding to n = 2,3 and m = 1,2,3,4 modes, on the contrary, 

decrease. At the limit, they approach the eigenfrequencies of the vibrations of a straight section of 

composite elastic pipe.  
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5. Conclusions 

1. The paper provided a mathematical problem and a method to assess the natural vibrations of 

thin-walled composite viscoelastic curved pipes using the theoretical preconditions of the 

approximate energy method. 

2. A homogeneous differential equation was derived to estimate the natural vibrations of a 

cylindrical shell and a hinged-supported straight rod, taking into account the layered-fibrous 

structure and the anisotropy of the material. 

3. The lower complex eigenfrequencies and vibration modes of hinged-supported multilayer 

composite curved pipes were obtained. 

4. Based on the analysis, it was stated that at a decrease in initial curvature of the pipe, the lower 

frequencies increase, and the higher ones, on the contrary, decrease, and, at the limit, they approach 

the eigenfrequencies of a straight section of a pipe. 
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