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Abstract. The possibility of applying one-dimensional hydrodynamic 
equations of a nonstationary flow averaged over the cross-section of the 
channel during mathematical modeling of long waves-abruptly changing 
the movement of the water flow in channels is substantiated in the article. 
The characteristic dimensions of the length are much larger than the depth 
of the flow-the theory of shallow water. With this averaging, it is necessary 
to apply some hypotheses, the most important of which is the hypothesis of 
the distribution of pressure over the depth of the flow 

1 Introduction 

In mathematical modeling of the movement of gases and liquids, a system of hydrodynamic 
equations based on the conservation of mass and momentum is often used[1, 2]. In most 
cases, they are based on the hypothesis of hydrostatic pressure distribution over depth. It 
should be noted that in long-wave processes, several important hydrodynamic effects 
cannot be described by the Saint-Venant equations. Therefore it is necessary, in some way, 
to take into account the influence on the pressure distribution over the depth of the 
curvature of the jets [3]. 

2 Methods 

For these equations, academician S.A. Khristianovich described internal boundary 
conditions on Bor, where he used the Galileo transform, a mathematical expression of 
Newton's 1st law of the jump function [4]. 
American gas dynamicists R. Courant and K. Friedrichs developed an important idea for 
various branches of mechanics, according to which the differential equations of motion of 
the medium are the consequence of integral conservation laws (in the case of gas dynamics 
– the laws of conservation of mass, momentum, and energy), obtained by applying the 
Stokes formula to these equations [5]. This formula in a two-dimensional setting is called 
the green formula. 
R. Kurant proved [6] that the integral equations of mechanics are valid for both continuous 
solutions and discontinuities (in gas dynamics – shock waves). This shows that numerical 
methods in various sections of mechanics should be based on integral equations, which 
ensures automatic fulfillment of conditions on discontinuities. Differential equations 
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obtained in this way are called conservative or divergent. 
As is known, the Saint-Venant equations in a channel with an arbitrary form have the form 
[7, 8, 9] (here and further, the correction of the amount of motion α=1): 
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where: t is time, x is longitudinal (along the bed) coordinate;   is the cross-sectional area 
of water; vQ   is water consumption; v is flow velocity; chS   is static moment of the 
cross-section relative to the free surface equals the cross-sectional area to the depth of its 
centre of gravity vertically ch ;   is wetted perimeter; Zfs is mark free surface; g is 
acceleration of gravity; q is the specific (per unit length of the channel) the flow rate of the 
inflow when q>0 ("rain intensity") or drawing water from the riverbed when q<0; inv  is the 
speed of water flowing in from outside (when water flows out of the riverbed in one-
dimensional schematization, we assume that the momentum carried out of the riverbed flow 
is related only to the average speed of water in the riverbed), 
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g
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Weisbach coefficient of hydraulic friction; C is the Shezi coefficient. 
In the practice of computational hydraulics, to set the hydraulic friction vector in two-
dimensional (planned) equations, the hypothesis is accepted that this vector is collinear to 
the vector of the depth-averaged flow velocity and is directed in the opposite direction, and 
to set a specific friction law, standard formulas used for wide rectangular channels are used 
[10]. Equation (1) is the continuity equation multiplied by the density of the liquid p; it 
expresses the law of conservation of the mass of the incompressible liquid in the channel. 
Equation (2) is the equation of motion multiplied by the density of the liquid p; it expresses 
the law of conservation of momentum. The meaning of some terms of the equation of 
motion: 2 /Q   is the flow of the amount of movement in the line, divided by the density of 
water ρ; gS  is hydrostatic pressure in the line (in units of a water column, that is, divided 
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It looks even simpler in the case of a wide rectangular riverbed: 
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where: q is specific flow rate (that is, the flow rate divided by the width of the riverbed In). 
In this case, the flow rate and the impulse introduced into the channel must also be divided 

by B: /q q B

 , /r r B


 . 

Next, consider the equations (1), (2) as: 
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We transform equation (8) using the differentiation formula [13]: 
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Moving from the static moment S to the flow depth h (h is the maximum depth in the line), 
we assume that ω, h and S are one – to-one functions. 
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From the static moment definition: 
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Equation (14) was widely used in hydraulics until the advantage of using the divergent 
form of equation (8) became known, and it was in this form that it was given (without the 

right part 0

r ). 

The following form of the equation of motion can be obtained from equation (14) by 
obvious identical transformations: 
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3 Results and Discussion 

This form of the equation of motion is divergent, but discontinuous (generalized) solutions 
with borons and hydraulic jumps lead to physically incorrect results. However, it is used in 
computational hydraulics because burs and hydraulic jumps are not present in the problems 
under consideration. The advantage of this form of the equation of motion is that with a 
steady flow, known in hydraulics, the equation of the curve of the free surface in the 
channel. Numerical methods, as a rule, do not give exact solutions. As a result, we have to 
resort to some properties that allow us to estimate their approximation to exact solutions. 
Using the form (15) of the continuity equation, it is possible to achieve (in the absence of 
bottom roughness and inflow) the exact execution of the Bernoulli equation in the 
numerical method. This important application of the form (15) was proposed by the famous 
hydrologist – Professor L. S. Kuchment [11-19]. 

It should be noted that for the first time, the Saint-Venant equations in divergent form 
for the simplest special case of a wide rectangular channel were solved at the Institute of 
Hydrodynamics of the USSR Academy OF Sciences by O. F. Vasiliev and M. T. 
Gladyshev [12], [20-31]. 
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where: cghS  , S  is the static moment of the live section of the channel relative to the 

free surface cgh is the depth of immersion of the center of gravity  is the wetted perimeter 

of the channel; 
2
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g
  is the coefficient of hydraulic friction Darcy-Weisbach. The Coriolis 

coefficient α takes into account the velocity plot. Many scientists were engaged in solving 
this system of the equation [12-15]. 
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4 Conclusions 

Depending on the problem statement, various restrictions and assumptions were made that 
simplify the solution to the problem. Therefore, there was a decrease in the correctness of 
the obtained solutions. 

In conclusion, it should be noted that the analysis of all existing solutions of the Saint-
Venant equation system allowed us to determine the main hypotheses on which the 
successful solution of one-dimensional Saint-Venant equations is based: 

- the depth of the stream must be less than the linear dimensions essential for this 
engineering task, the flow features along the length of the channel: 

 
h<<L          (17) 

 
where:  h is the flow depth; L is the characteristic horizontal linear size of the problem 

to be solved; 
- planned (two-dimensional) effects do not affect the flow (but local energy losses due 

to sharp turns and changes in the shape of the riverbed in the plan can still be taken into 
account; to account for such losses, increased local hydraulic resistances are introduced in 
local sections of the riverbed); 

- the curvature of the jets in the vertical sections of the flow is small, which allows us to 
use the hypothesis of hydrostatic pressure distribution over the depth; 

- the slope of the free water surface in the direction perpendicular to the flow is small; 
there is a functional relationship between the mark of the free water surface and the 
pressure; 

- density stratification should not occur in the stream; in river flows, density 
stratification is rare, but in some cases, its presence occurs (a well-known example is 
density stratification in a flat river near the bottom water intake of a thermal power plant 
that discharges partially cooled water into the same river above the water intake); 

- when studying nonstationary processes in rivers, it is acceptable to use formulas for 
the Darcy-Weisbach or Shezi hydraulic friction coefficients derived for the conditions of 
steady motion in the riverbeds, for example, the Maning or Forchheimer formulas (there are 
situations when this hypothesis did not correspond to reality); 

- corrective amount of movement of α close to 1 (velocity across the target is almost 
uniform). This hypothesis is not quite correct, even in a wide rectangular channel, when the 
magnitude of the adjustment affects only the shape of the plot for flow depth [8,16]. 

It should be noted that the hypotheses justified above and taken as the basis of one-
dimensional Saint-Venant equations are presented in this interpretation for the first time. 

In addition, according to the above, it can be noted that one-dimensional Saint-Venant 
equations have a phenomenal property – they have infinitely many divergent forms that are 
equivalent to each other for continuous solutions. Still, each of these forms corresponds to 
its own hugoniot conditions. Of course, only one form is correct, which is the Galilean 
transformation of the jump function [17] 
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